For five different regions in Kırklareli province, heavy metals; such as Pb, Ni, Cu, Mn, Cd, Cr, Co, Zn, Mo, and Fe in the mixture of leaves and flowers from linden trees (Tilia tomentosa L.) were analyzed by using flame atomic absorption spectroscopy after the samples were dissolved with microwave method. Also, organochloride pesticides; such as ∑BHC: [α-BHC, β-BHC, γ-BHC, and δ-BHC], ∑DDT: [4,4’-DDD, 4,4’-DDE, and 4,4’-DDT], α-Endosulfan, β-Endosulfan, Endosulfan sulfate, Heptachlor, Heptachlor-endo-epoxide, Aldrin, Dieldrin, Endrin aldehyde, Endrin ketone, Endrin and Methoxychlor in these samples were determined by utilizing gas chromatography mass spectroscopy after the samples were prepared for analyses by using QuEChERS method. The metal concentrations in the samples were in the range of 45.3 to 268 mg/kg for Mn, 0.25 to 18.8 mg/kg for Cu, 11.5 to 46.1 mg/kg for Zn, 128 to 1310 mg/kg for Fe, 10.4 to 38.6 mg/kg for Mo, 0.82 to 1.34 mg/kg for Cd, 0 to 6.45 mg/kg for Ni, 0 to 19.2 mg/kg for Pb, and 0 to 8.25 mg/kg for Cr. Moreover, the concentrations of organochloride pesticides in samples were usually determined to be lower than their maximum residue level values given the pesticide residue limit regulation of Turkish Food Codex.
Natural forests and abandoned agricultural lands are increasingly replaced by monospecific forest plantations that have poor capacity to support biodiversity and ecosystem services. Natural forests harbour plants belonging to different mycorrhiza types that differ in their microbiome and carbon and nutrient cycling properties. Here we describe the MycoPhylo field experiment that encompasses 116 woody plant species from three mycorrhiza types and 237 plots, with plant diversity and mycorrhiza type diversity ranging from one to four and one to three per plot, respectively. The MycoPhylo experiment enables us to test hypotheses about the plant species, species diversity, mycorrhiza type, and mycorrhiza type diversity effects and their phylogenetic context on soil microbial diversity and functioning and soil processes. Alongside with other experiments in the TreeDivNet consortium, MycoPhylo will contribute to our understanding of the tree diversity effects on soil biodiversity and ecosystem functioning across biomes, especially from the mycorrhiza type and phylogenetic conservatism perspectives.
Cocoa is important for the economy and rural development of Ghana. However, small-scale cocoa production is the leading agricultural product driver of deforestation in Ghana. Uncertain tree tenure disincentivizes farmers to retain and nurture trees on their farms. There is therefore the call for structures that promote tree retention and management within cocoa farming. We examined tenure barriers and governance for tree resources on cocoa farms. Data was collected from 200 cocoa farmers from two regions using multistage sampling technique. Information was gathered on tree ownership and fate of tree resources on cocoa farms, tree felling permit acquisition and associated challenges and illegal logging and compensation payments on cocoa farms. Results suggest 62.2% of farmers own trees on their farms. However, these farmers may or may not have ownership rights over the trees depending on the ownership of their farmlands. More than half of the farmers indicated they require felling permits to harvest trees on their farms, indicative of the awareness of established tree harvesting procedures. Seventy percent of the farmers have never experienced illegal logging on their farms. There is however the need to educate the remaining 30% on their rights and build their compensation negotiation powers for destructions to their cocoa crops. This study has highlighted ownership and governance issues with cocoa farming and it is important for the sustainability of on-farm tree resources and Ghana’s forest at large.
In order to evaluate the temporal changes in tree diversity of forest vegetation in Xishuangbanna, Yunnan Province, the study collected tree diversity data from four main forest vegetation in the region through a quadrat survey including tropical rainforest (TRF), tropical coniferous forest (COF), tropical lower mountain evergreen broad-leaved forest (TEBF), tropical seasonal moist forest (TSMF). We extracted the distribution of four forest vegetation in the region in four periods of 1992, 2000, 2009, and 2016 in combination with remote sensing images, using simp son Shannon Wiener and scaling species diversity indexes compare to the differences of tree evenness of four forest vegetation and use the scaling ecological diversity index and grey correlation evaluation model to evaluate the temporal changes of forest tree diversity in the region in four periods. The results show that: (1) The proportion of forest area has a trend of decreasing first and then increasing, which is shown by the reduction from 65.5% in 1992 to 53.42% in 2000, to 52.49% in 2009, and then to 54.73% in 2016. However, the tropical rainforest shows a continuous decreasing trend. (2) There are obvious differences in the contributions of the four kinds of forest vegetation to tree diversity. The order of evenness is tropical rainforest > tropical mountain (low mountain) evergreen broad-leaved forest > warm coniferous forest > tropical seasonal humid forest, and the order of richness is tropical rainforest > tropical mountain (low mountain) evergreen broad-leaved forest > tropical seasonal humid forest > warm coniferous forest, The order of contribution to tree diversity in tropical rainforest > tropical mountain (low mountain) evergreen broad-leaved forest > tropical seasonal humid forest > warm tropical coniferous forest. (3) The tree diversity of tropical rainforests and tropical seasonal humid forests showed a continuous decreasing trend. The tree diversity of forest vegetation in Xishuangbanna in four periods was 1992 > 2009 > 2016 > 2000. The above results show that economic activities are an important factor affecting the biodivesity of Xishuangbanna, and the protection of tropical rainforest is of great significance to maintain the biodiversity of the region.
The exploitation of timber has had a profound impact on tropical forest areas and their structures. This study assessed the effect of selective logging on natural regeneration and soil characteristics in post-loading bay sites at the Pra-Anum forest reserve in Ghana, West Africa. The results showed no difference in the number of species enumerated in the loading bays and the undisturbed area. More trees were observed in the RAT and RNT plots than in the undisturbed area. Relative to the RAT plot, species on the RNT and the undisturbed area were less diverse and less evenly distributed. Mean tree height, diameter, and basal area were higher in the RAT and RNT plots than in the undisturbed plots. Soil bulk density was lower in the RAT and undisturbed plot than in the RAT plot and increased with increased depth. Soil organic matter was 44% and 27% more in the undisturbed and RAT plots, respectively, than in the RNT plot and accounted for 84.75%, 83.97% and 45.33% of variations in soil bulk density, pH, and CEC. The study provides insight into the need to rehabilitate highly disturbed areas in forests, particularly the addition of topsoil on loading bays, skid trails, roads, and gaps after logging to improve the productivity of the forest soils.
Copyright © by EnPress Publisher. All rights reserved.