Artificial intelligence chatbots can be used to conduct research effectively and efficiently in the fifth industrial revolution. Artificial intelligence chatbots are software applications that utilize artificial intelligence technologies to assist researchers in various aspects of the research process. These chatbots are specifically designed to understand researchers’ inquiries, provide relevant information, and perform tasks related to data collection, analysis, literature review, collaboration, and more. The purpose of this study is to investigate the use of artificial intelligence chatbots for conducting research in the fifth industrial revolution. This qualitative study adopts content analysis as its research methodology, which is grounded in literature review incorporating insights from the researchers’ experiences with utilizing artificial intelligence. The findings reveal that researchers can use artificial intelligence chatbots to produce quality research. Researchers are exposed to various types of artificial intelligence chatbots that can be used to conduct research. Examples are information chatbots, question and answer chatbots, survey chatbots, conversational agents, peer review chatbots, personalised learning chatbots and language translation chatbots. Artificial intelligence chatbots can be used to perform functions such as literature review, data collection, writing assistance and peer review assistance. However, artificial intelligence chatbots can be biased, lack data privacy and security, limited in creativity and critical thinking. Researchers must be transparent and take in consideration issues of informed content and data privacy and security when using artificial intelligence chatbots. The study recommends a framework on artificial intelligence chatbots researchers can use to conduct research in the fifth industrial revolution.
The power of Artificial Intelligence (AI) combined with the surgeons’ expertise leads to breakthroughs in surgical care, bringing new hope to patients. Utilizing deep learning-based computer vision techniques in surgical procedures will enhance the healthcare industry. Laparoscopic surgery holds excellent potential for computer vision due to the abundance of real-time laparoscopic recordings captured by digital cameras containing significant unexplored information. Furthermore, with computing power resources becoming increasingly accessible and Machine Learning methods expanding across various industries, the potential for AI in healthcare is vast. There are several objectives of AI’s contribution to laparoscopic surgery; one is an image guidance system to identify anatomical structures in real-time. However, few studies are concerned with intraoperative anatomy recognition in laparoscopic surgery. This study provides a comprehensive review of the current state-of-the-art semantic segmentation techniques, which can guide surgeons during laparoscopic procedures by identifying specific anatomical structures for dissection or avoiding hazardous areas. This review aims to enhance research in AI for surgery to guide innovations towards more successful experiments that can be applied in real-world clinical settings. This AI contribution could revolutionize the field of laparoscopic surgery and improve patient outcomes.
This study explores the impact of technological innovations on audit transparency, objectivity, and assurance. The study employs a systematic literature review methodology, analyzing a wide range of scholarly articles, research papers, and reports to synthesize the findings. The methodology involved identifying keywords, conducting comprehensive searches in academic databases, and evaluating the selected literature. The study identifies key themes on how technological innovations impact audit practices through analysis of the literature. The impacts of technology include enhanced audit transparency through improved documentation capabilities, real-time reporting, and increased stakeholder engagement. Technological advancements bolster audit objectivity by automating repetitive tasks, facilitating advanced data analysis, and promoting standardized audit procedures. However, the analysis highlighted challenges associated with the use of technology in audits including complex technology implementation and the potential for biases. This research study contributes to the existing body of knowledge by consolidating relevant research and insights on the subject matter.
Sport has become a fundamental socio-economic area. Currently, technological progress plays one of the most important roles in the development of sport. In the twenty-first century, innovation, and technology are significantly shaping the world of law enforcement and sports policing, and huge changes are taking place that need to be responded to. The development, spread and completion of info communication, information technology, digital technologies, and digitalization itself at an ever-faster pace than ever before are fundamentally changing all areas of the economy and society. Today there is no question that digitalization is the engine of the economy, which has an impact in all sectors, including sports and law enforcement. In the study, the authors examine the possibility of technical development in the field of sports safety. Among other things, drones, facial recognition systems and predictive analytics will be examined. The methodology used is mainly based on the analysis and examination of previous methods. The authors propose to adapt the innovative tools used at previous sports and mass events in the field of sports safety.
While the rapid development of artificial intelligence has affected people's daily lives, it has also brought huge challenges to high school mathematics teaching, such as restructuring the classroom teaching structure, transforming the role of teachers, and selecting classroom teaching methods. Based on this, the article explores the application strategies of AI technology in improving knowledge introduction, improving mathematics classroom efficiency and stimulating students' learning interest, with a view to optimizing classroom teaching links, improving students' core discipline quality, and promoting the development of high school mathematics teaching informatization.
Copyright © by EnPress Publisher. All rights reserved.