Lu S. Cartography can be regarded as an implemental science (in Chinese). Acta Geodaetica et Cartographica Sinica 1992; 21(4): 307–311.
Gao J. Cartographic tetrahedron: Explanation of cartography in the digital era (in Chinese). Acta Geodaetica et Cartographica Sinica 2004; 33(1): 6–11.
Guo R, Ying S. The rejuvenation of cartography in ICT era (in Chinese). Acta Geodaetica et Cartographica Sinica 2017; 46(10): 1274–1283.
Lu G, Yu Z, Yuan L, et al. Is the future of cartography the scenario science (in Chinese)?. Journal of Geo-Information Science 2018; 20(1): 1–6.
Yu Z, Lu G, Zhang X, et al. Paninformation-based high precision navigation map: Concept and theoretical model. Journal of Geo-Information Science 2020; 22(4): 760–771.
Weibel R, Keller S, Reichenbacher T (editors). Overcoming the knowledge acquisition bottleneck in map generalization: The role of interactive systems and computational intelligence. Proceedings of 1995 International Conference on Spatial Information Theory. Semmering: Springer; 1995. p.139–156.
Ai T. Maps adaptable to represent spatial cognition (in Chinese). Journal of Remote Sensing 2008; 12(2): 347–354.
Zhou Z. Machine learning (in Chinese). Beijing: Tsinghua University Press; 2016.
Sun Q. Expert system and its application in cartography (in Chinese). Journal of Institute of Surveying and Mapping 1992: (1): 67–73.
Hua Y. Determine the map symbol type of map element with expert system technology (in Chinese). Journal of Institute of Surveying and Mapping 1991; (3): 43–47, 55.
Zhang W, Su B, Li H, et al. An integrated expert system tool-GEST (in Chinese). Journal of Wuhan Technical University of Surveying and Mapping 1992; 17(3): 1–8.
Sester M. Knowledge acquisition for the automatic interpretation of spatial data. International Journal of Geographical Information Science 2000; 14(1): 1–24.
Sester M. Optimization approaches for generalization and data abstraction. International Journal of Geographical Information Science 2005; 19(8–9): 871–897.
Qian H, Wu F, Wang J. Study of automated cartographic generalization and intelligentized generalization process control. Beijing: Surveying and Mapping Press; 2012.
Gao S. A review of recent researches and reflections on geospatial artificial intelligence (in Chinese). Geomatics and Information Science of Wuhan University 2020; 45(12): 1865–1874.
Touya G, Zhang X, Lokhat I. Is deep learning the new agent for map generalization? International Journal of Cartography 2019; 5(2–3): 142–157.
Lei Y, Ai T, Zhang X, et al. A parallel annotation placement method for dense point of interest labels using hexagonal grid. Cartography and Geographic Information Science 2021; 48(2): 95–104.
Lecun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521(7553): 436–444.
Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE 1998; 86(11): 2278–2324.
Reichstein M, Camps-Valls G, Stevens B, et al. Deep learning and process understanding for data-driven. Earth system science. Nature 2019; 566(7743): 195–204.
Zhu D, Liu Y (editors). Modelling spatial patterns using graph convolutional networks (short paper). Proceedings of the 10th International Conference on Geographic Information Science. Dagstuhl: Schloss Dagstuhl-Leibniz- Zentrum fuer Informatik; 2018. p. 1–7.
Jenny B, Heitzler M, Singh D, et al. Cartographic relief shading with neural networks. IEEE Transactions on Visualization and Computer Graphics 2021; 27(2): 1225–1235.
Liu J, Zhan J, Guo C, et al. Data logic structure and key technologies on intelligent high-precision map (in Chinese). Acta Geodaetica et Cartographica Sinica 2019; 48(8): 939–953.
Mcculloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics 1943; 5(4): 115–133.
Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature 1986; 323(6088): 533–536.
O’Callachan JF, Mark DM. The extraction of drainage networks from digital elevation data. Computer Vision, Graphics, and Image Processing 1984; 28(3): 323–344.
Niepert M, Ahmed M, Kutzkov K (editors). Learning convolutional neural networks for graphs. Proceedings of the 33rd International Conference on Machine Learning. New York: Curran Associates; Inc.; 2016. p. 2014–2023.
Kipf TN, Welling M (editors). Semi-supervised classification with graph convolutional networks. Proceedings of the 5th International Conference on Learning Representations. Toulon: ICLR; 2017.
Tobler WR. A computer movie simulating urban growth in the Detroit region. Economic Geography 1970; 46 (S1): 234–240.
Anselin L. Local indicators of spatial association: LISA. Geographical Analysis 1995; 27(2): 93–115.
Ai T. Development of cartography driven by big data (in Chinese). Journal of Geomatics 2016; 41(2): 1–7.
Rrn S, He K, Girshick R, et al. Faster RCNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence 2017; 39 (6): 1137–1149.
He K, Gkioxari G, Doll RP, et al. (editors). Mask RCNN. Proceedings of 2017 IEEE International Conference on Computer Vision. Venice: IEEE; 2017. p. 2980–2988.
Yu B, Yin H, Zhu Z (editors). Spatio-temporal graph convolutional neural network: A deep learning framework for traffic forecasting. Proceedings of the 27th International Joint Conference on Artificial Intelligence Main Track. Stockholm: IJCAI; 2018. p. 3634–3640.
Xin H, Meng Y. Integrating landscape metrics and socioeconomic features for urban functional region classification. Computers, Environment and Urban Systems 2018; 72: 134–145.
Cao R, Tu W, Yang C, et al. Deep learning-based remote and social sensing data fusion for urban region function recognition. ISPRS Journal of Photogrammetry and Remote Sensing 2020; 163: 82–97.
Li Z Wang J, Tan S, et al. Scale in geo-information science: An overview of thirty-year development (in Chinese). Geomatics and Information Science of Wuhan University 2018; 43(12): 2233–2242.
Plazanet C, Bigolin NM, Ruas A. Experiments with learning techniques for spatial model enrichment and line generalization. Geo Informatica 1998; 2(4): 315–333.
Ruas A, Duchene C. A prototype generalisation system based on the multi-agent system paradigm. In: Mackaness WA, Ruas A, Sarjakoski LT (editors). Generalisation of Geographic Information. Amsterdam: Elsevier; 2007. p. 269–284.
Sester M, Feng Y, Thiemann F (editors). Building generalization using deep learning. Proceedings of the International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sciences; 2018. p. 565–572.
Yan X, Ai T, Yang M, et al. Graph convolutional autoencoder model for the shape coding and cognition of buildings in maps. International Journal of Geographical Information Science 2021; 35(3): 490–512.
Yan X, Ai T, Yang M, et al. A graph convolutional neural network for classification of building patterns using spatial vector data. ISPRS Journal of Photogrammetry and Remote Sensing 2019; 150: 259–273.
Lee J, Jang H, Yang J, et al. Machine learning classification of buildings for map generalization. ISPRS International Journal of Geo-Information 2017; 6(10): 309–324.
Gatys L A, Ecker A S, Bethge M (editors). Image style transfer using convolutional neural networks. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition; Las Vegas; IEEE; 2016: 2414–2423.
Goodfellos I J, Pouget-Abadie J, Mirza M, et al (editors). Generative adversarial networks. Proceedings of the 27th International Conference on Neural Information Processing Systems: vol. 2. Cambridge: MIT Press; 2014. p. 2672–2680.
Schnuere R, Sieber R, Schmid-Lanter J, et al. Detection of pictorial map objects with convolutional neural networks. The Cartographic Journal 2020.
Ren J Liu W, Li Z, et al. Intelligent detection of “Problematic Map” using convolutional neural network. Geomatics and Information Science of Wuhan University 2021; 46(4): 570–577.
Wang M Ai T, Yan X, et al. Grid pattern recognition in road networks based on graph convolution network model (in Chinese). Geomatics and Information Science of Wuhan University 2020; 45(12): 1960–1969.
He H, Qian H, Xie L, et al. Interchange recognition method based on CNN. Acta Geodaetica et Cartographica Sinica 2018; 47(3): 385–395.
Hu S, Gao S, Wu L, et al. Urban function classification at road segment level using taxi trajectory data: A graph convolutional neural network approach. Computers, Environment and Urban Systems 2021; 87: 101619.