Aiming at the problem of incompatibility of biomass models of forest organs, taking Chinese fir in Fujian Jiangle State-owned Forest Farm as the research object, based on selecting the optimal independent model of each organ, the biomass compatibility model of Chinese fir was established with a three-level joint control scheme. The results show that the compatibility equation system based on the whole plant biomass can effectively solve the problem of incompatibility in the whole plant biomass, each sub-biomass and between sub-biomass. Besides, except for the leaf biomass model, all other biomass models have good fitting effect, which is of great significance to the guidance of the analysis of local Chinese fir biomass.
In order to maximize the potential energy utilization of agricultural and forestry waste and sludge, the experimental research on co-pyrolysis was carried out for two kinds of sludge (urban industrial sludge, paper sludge) and a typical biomass straw. The results show that adding biomass can effectively improve sludge pyrolysis characteristics; biomass straw and sludge, there are complex interactive effects between components in the co-pyrolysis process, and the characteristic parameters show nonlinear changes. When industrial sludge is mixed with straw, with the increase of straw content, the initial temperature of pyrolysis gradually decreases, the termination temperature increases, the peak of pyrolysis reaction rate and the corresponding temperature gradually increase, and the pyrolysis index gradually increases; when paper sludge is mixed with straw, with the increase of straw content, the initial temperature of pyrolysis gradually decreases, the termination temperature increases, the peak of pyrolysis reaction rate gradually increases, while the peak corresponding temperature gradually decreases, and the pyrolysis index gradually decreases. Combined with characteristic parameters and reaction kinetics analysis, it is suggested that the straw mixing proportion should be controlled at about 25% during the co-pyrolysis of industrial sludge and straw. During the co-pyrolysis of paper sludge and straw, it is suggested to control the straw blending ratio at about 75%.
Every plant is significantly important in tackling climate change, including Makila (Litsea angulata BI) an endemic wood species found in the forest of Moluccas Provinces. Therefore, this research aimed to examine the role of the Makila plant in tackling climate change by measuring biomass content using constructing an allometric equation. The method used was a destructive sampling, where 40 units of Makila plant at the sampling level were felled, and sorted according to root, stem, branch, rating, and leaf segments. Each segment was weighed both at wet and after drying, followed by a classical assumption test in data processing, and the formulation of an allometric equation. The regression model was examined for normality and suitability in predicting independent variables, ensuring there were no issues with multicollinearity, heteroscedasticity, and autocorrelation. The results yielded a multiple linear regression, namely: Y = −1131.146 + 684.799X1 + 4.276X2, where Y is biomass, X1 is the diameter, and X2 is the tree height. Based on the results of the t-test: variable X1 partially affected Y while variable X2 partially had no effect on Y. The F-test indicated that variables X1 and X2 jointly affected Y with R Square: 0.919 or 91.9% and the rest was influenced by other unexplored factors. To simplify biomass prediction and field measurement, a regression equation that used only 1 independent variable, namely tree diameter, was used for the experiment. Allometric equation only used 1 variable, Y = −1,084,626 + 675,090X1, where X1 = tree diameter, Y = Total biomass with R = 0.957, and R2 = 0.915. Considering the potential for time, cost, and energy savings, as well as ease of measurement in the field, the biomass of young Makila trees was simply predicted by measuring the tree diameter and avoiding the height. This method used the strong relationship between biomass, plant diameter, and height to facilitate the estimation of biomass content accurately by entering the results of field measurements.
The use of different energy sources and the worry of running out of some of them in the modern world have made factors such as environmental pollution and even energy sustainability vital. Vital resources for humanity include water, environment, food, and energy. As a result, building strong trust in these resources is crucial because of their interconnected nature. Sustainability in security of energy, water and food, generally decreases costs and improves durability. This study introduces and describes the components of a system named “Desktop Energetic Dark Greenhouse” in the context of the quadruple nexus of water, environment, food, and energy in urban life. This solution can concurrently serve to strengthen the sustainable security of water, environment, food, and energy. For home productivity, a small-scale version of this project was completed. The costs and revenues for this system have been determined after conducting an economic study from the viewpoints of the investor and the average household. The findings indicate that the capital return period is around five years from the investor’s perspective. The capital return on investment for this system is less than 4 years from the standpoint of the households. According to the estimates, this system annually supplies about 20 kg of vegetables or herbs, which means about one third of the annual needs of a family.
One of the biggest environmental problems that has affected the planet is global warming, due to high concentrations of carbon (CO2), which has led to crops such as coffee being affected by climate change caused by greenhouse gases (GHG), especially by the increase in the incidence of pests and diseases. However, carbon sequestration contributes to the mitigation of GHG emissions. The objective of this work was to evaluate the carbon stored in above and below ground biomass in four six-year-old castle coffee production systems. In a trial established under a Randomized Complete Block Design (RCBD) with the treatments Coffee at free exposure (T1), Coffee-Lemon (T2), Coffee-Guamo (T3) and Coffee-Carbonero (T4), at three altitudes: below 1,550 masl, between 1,550 and 2,000 masl and above 2,000 masl. Data were collected corresponding to the stem diameters of coffee seedlings and shade trees with which allometric equations were applied to obtain the carbon variables in the aerial biomass and root and the carbon variables in leaf litter and soil obtained from their dry matter. Highly significant differences were obtained in the four treatments evaluated, with T4 being the one that obtained the highest carbon concentration both in soil biomass with 100.14 t ha-1 and in aerial biomass with 190.42 t ha-1.
Copyright © by EnPress Publisher. All rights reserved.