This contribution aims to appraise, analyze and evaluate the literature relating to the interaction of electromagnetic fields (EMF) with matter and the resulting thermal effects. This relates to the wanted thermal effects via the application of fields as well as those uninvited resulting from exposure to the field. In the paper, the most popular EMF heating technologies are analyzed. This involves on the one hand high frequency induction heating (HFIH) and on the other hand microwave heating (MWH), including microwave ovens and hyperthermia medical treatment. Then, the problem of EMF exposure is examined and the resulting biological thermal effects are illuminated. Thus, the two most common cases of wireless EMF devices, namely digital communication tools and inductive power transfer appliances are analyzed and evaluated. The last part of the paper concerns the determination of the different thermal effects, which are studied and discussed, by considering the governing EMF and heat transfer (or bio heat) equations and their solution methodologies.
Delay is the leading challenge in completing Engineering, Procurement, and Construction (EPC) projects. Delay can cause excess costs, which reduces company profits. The relationship between subcontractors and the main contractor is a critical factor that can support the success of an EPC project. The problematic financial condition of the main contractor can cause delay in payments to subcontractors. This research will set a model that combines the system dynamics and earned value method to describe the impact of subcontractor advance payments on project performance. The system dynamics method is used to model and analyze the impact of interactions between variables affecting project performance, while the earned value method is applied to quantitatively evaluate project performance and forecast schedule and cost outcomes. These two methods are used complementarily to achieve a holistic understanding of project dynamics and to optimize decision-making. The designed model selects the optimum scenario for project time and costs. The developed model comprises project performance, costs, cash flow, and performance forecasting sub-models. The novelty in this research is a new model for optimizing project implementation time and costs, adding payment rate variables to subcontractors and subcontractor performance rates. The designed model can provide additional information to assist project managers in making decisions.
In today’s manufacturing sector, high-quality materials that satisfy customers’ needs at a reduced cost are drawing attention in the global market. Also, as new applications are emerging, high-performance biocomposite products that complement them are required. The production of such high-performance materials requires suitable optimization techniques in the formulation/process design, not simply mixing natural fibre/filler, additives, and plastics, and characterization of the resulting biocomposites. However, a comprehensive review of the optimization strategies in biocomposite production intended for infrastructural applications is lacking. This study, therefore, presents a detailed discussion of the various optimization approaches, their strengths, and weaknesses in the formulation/process parameters of biocomposite manufacturing. The report explores the recent progress in optimization techniques in biocomposite material production to provide baseline information to researchers and industrialists in this field. Therefore, this review consolidates prior studies to explore new areas.
Copyright © by EnPress Publisher. All rights reserved.