The US Infrastructure Investment and Job Act (IIJA), also commonly referred to as the Bipartisan Infrastructure Bill, passed in 2021, has drawn international attention. It aims to help to rebuild US infrastructure, including transportation networks, broadband, water, power and energy, environmental protection and public works projects. An estimated $1.2 trillion in total funding over ten years will be allocated. The Bipartisan Infrastructure Bill is the largest funding bill for US infrastructure in the recent history of the United States. This review article will specifically discuss funding allocations for roads and bridges, power and grids, broadband, water infrastructure, airports, environmental protection, ports, Western water infrastructure, electric vehicle charging stations and electric school buses in the new spending of the Infrastructure Investment and Job Act and why these investments are urgently necessary. This article will also briefly discuss the views of think tank experts, the public policy perspectives, the impact on domestic and global arenas of the new spending in the IIJA, and the public policy implications.
Based on 898 English documents and 363 Chinese documents citing the Rising of Network Society, it studied that the knowledge contribution of citation content analysis and citation context analysis methods, and the knowledge contribution of Chinese and foreign quotations to human geography. The study found that “mobile space” is the most quoted theoretical view in domestic and foreign literature, and the proportion of domestic research is significantly higher than foreign research; the focus of domestic and foreign research focuses on the external spatial form and its transformation, while foreign research pays more attention on the internal spatial dynamics of network society and three types of knowledge contributions, reflecting the influence of “network social theory” on human geography. Among them, critical references reveal the shortcomings of “network social theory” point out the abstraction of “spatial duality” the importance of local space, and the limitations of research data, methods, and time background, which provides new enlightenment for the future application and innovation of “network social theory” in the field of human geography.
Smallholder paprika farmers in Zimbabwe contribute to local economies and food security but face supply chain challenges like limited market access and poor infrastructure which lead to post harvest losses and unpredictable prices. To survive, these farmers must adopt sustainable value networks to reduce operational costs and improve performance. This study sought to establish the effect of sustainable value networks on the operational performance of smallholder paprika farming in Zimbabwe. This study, using a positivist research philosophy and a quantitative approach, surveyed 288 smallholder paprika farmers in Zimbabwe. Exploratory factor analysis and partial least squares structural equation modelling were used to validate the constructs and test the hypothesised relationships. Results demonstrate a moderate level of implementation of value networks in smallholder paprika farming characterised by successes and challenges. The findings illustrated resource sharing among smallholder farmers, facilitated by initiatives, such as recycled seed exchanges and financial support through village savings and loan associations. However, results show that challenges persist, particularly with market access and financial support. Results indicate that there is a significant awareness and implementation of green supply chain management practices among smallholder paprika farmers even though they do not have access to resources and live in rural areas. The findings demonstrate that value networks significantly influence the adoption of green supply chain management practices, which in turn positively impact operational performance, environmental performance, and social performance. Green supply chain management practices were found to mediate the relationship between value networks and environmental performance, social performance, and operational performance, underlining the critical role of sustainable practices in enhancing performance outcomes. While environmental performance showed a positive effect on operational performance, the direct influence of social performance on operational performance was found to be statistically insignificant, suggesting the need for further exploration of the factors linking social benefits to operational efficiency. The research contributes to both theory and practice by presenting a sustainable value network model for smallholder paprika farmers, integrating value network, green supply chain management practices and environmental performance to enhance operational performance. Practical implications include policy recommendations to strengthen collaboration between smallholder farmers and other stakeholdersand address power imbalances with intermediaries. Future research should extend the study to other agricultural sectors and incorporate more diverse stakeholder perspectives to validate and generalise the proposed sustainable value network model.
This research examines three data mining approaches employing cost management datasets from 391 Thai contractor companies to investigate the predictive modeling of construction project failure with nine parameters. Artificial neural networks, naive bayes, and decision trees with attribute selection are some of the algorithms that were explored. In comparison to artificial neural network’s (91.33%) and naive bays’ (70.01%) accuracy rates, the decision trees with attribute selection demonstrated greater classification efficiency, registering an accuracy of 98.14%. Finally, the nine parameters include: 1) planning according to the current situation; 2) the company’s cost management strategy; 3) control and coordination from employees at different levels of the organization to survive on the basis of various uncertainties; 4) the importance of labor management factors; 5) the general status of the company, which has a significant effect on the project success; 6) the cost of procurement of the field office location; 7) the operational constraints and long-term safe work procedures; 8) the implementation of the construction system system piece by piece, using prefabricated parts; 9) dealing with the COVID-19 crisis, which is crucial for preventing project failure. The results show how advanced data mining approaches can improve cost estimation and prevent project failure, as well as how computational methods can enhance sustainability in the building industry. Although the results are encouraging, they also highlight issues including data asymmetry and the potential for overfitting in the decision tree model, necessitating careful consideration.
Simple mathematical expressions are given for the betweenness centrality of nodes in trees, forests and cycles. As application, a centrality test is given for when a network might be a forest.
Copyright © by EnPress Publisher. All rights reserved.