Bangladesh’s coastal regions are rich in saline water resources. The majority of these resources are still not being used to their full potential. In the southern Bangladeshi region of Patuakhali, research was conducted to investigate the effects of mulching and drip irrigation on tomato yield, quality, and blossom-end rot (BER) at different soil salinity thresholds. There were four distinct treatments applied: T1= drip irrigation with polythene mulch, T2 = drip irrigation with straw mulch, T3 = drip irrigation without mulch, and T4 = standard procedure. While soil salinity was much greater in treatment T3 (1.19–8.42 dS/m) fallowed by T4 (1.23–8.63 dS/m), T1 treatments had the lowest level of salinity and the highest moisture retention during every development stage of the crops, ranging from 1.28–4.29 dS/m. Treatment T3 exhibited the highest soil salinity levels (ranging from 1.19 to 8.42 dS/m), followed by T4 with a range of 1.23 to 8.63 dS/m. In contrast, T1 treatments consistently maintained the lowest salinity levels (ranging from 1.28 to 4.29 dS/m) and the highest moisture retention throughout all stages of crop development. In terms of yield, drip irrigation with no mulch treatment (T3) provided the lowest output (13.37 t/ha), whereas polyethylene mulching treatment (T1) produced the maximum yield (46.04 t/ha). According to the study, conserving moisture in tomato fields and reducing soil salinity may both be achieved with drip irrigation combined with polythene mulch. The research suggests that employing drip irrigation in conjunction with polythene mulch could effectively preserve moisture in tomato fields and concurrently decrease soil salinity.
The coastal area of Bohai Bay of China has a wide distribution of salt-accumulated soils which could pose a problem to the sustainable development of the local ecology. As a result, the land remains largely degraded and unsuitable for biophysical and agricultural purposes. In this study, we characterized the soil and native plants in the area, to properly understand and identify species with satisfactory adaptation to saline soil and of high economic or ecological value that could be further developed or domesticated, using appropriate cultivation techniques. The goal was to determine the salinity parameters of the soil, identify the inhabiting plant species and contribute to the ecosystem data base for the Bay area. A field survey involving soil and plant sampling and analyses was conducted in Yanshan and Haixing Counties of Hebei Province, China, to estimate the level of salt ions as well as plant species population and type. The mean electrical conductivity (EC) of the soils ranged from 0.47 in more remote locations to 23.8 ds/m in locations closer to the coastline and the total salt ions from 0.05 to 8.8 g/kg, respectively. Each of the salinity parameters, except HCO3− showed wide variations as judged from the coefficient of variation (CV) values. The EC, as well as chloride, sulphate, Mg and Na ions increased significantly towards the coastline but the HCO3− ion showed a relatively even distribution across sampling points. Sodium was the most abundant cation and chloride and sulphate the most abundant anions. Therefore, the most dominant salinity-inducing salt that should be properly managed for sustainable ecosystem health was sodium chloride. Based on the EC readings, the most remote location from the coastline was non-saline but otherwise, the salinity ranged from slightly to strongly-very strongly saline towards the coast. There were considerably wide variations in the number and distribution of plant species across sampling locations, but most were dominated entirely Phragmites australis, Setaria viridis and Sueda salsa. Other species identified were Aeluropus littoralis, Chloris virgata, Heteropappus altaicus, Imperata cylindrica, Puccinellia distans, Puccinellia tenuiflora and Scorzonera austriaca. On average, the sampling points furthest from the coast produced the most biomass, and the point with the highest elevation had the most diverse species composition. Among species, Digitaria sanguinalis produced the highest dry mass, followed by Lolium perenne and H. altaicus, but there were considerable variations in biomass yield across sampling locations, with the location nearest the coastline having no vegetation. The observed variations in soil and vegetation should be strongly considered by planners to allow for the sustainable development of the Bahai bay area.
Copyright © by EnPress Publisher. All rights reserved.