A salinity gradient solar pond (SGSP) is a large and deep artificial basin of layered brine, that collects and stores simultaneous solar energy for use in various applications. Experimental and theoretical studies have been launched to understand the thermal behavior of SGSPs, under different operating conditions. This article then traces the history of SGSPs, from their natural discovery to their current artificial applications and the progress of studies and research, according to their chronological sequence, in terms of determining their physical and dynamic aspects, their operation, management, and maintenance. It has extensively covered the theoretical and experimental studies, as well as the direct and laboratory applications of this technology, especially the most famous and influential in this field, classified according to the aspect covered by the study, with a comparison between the different results obtained. In addition, it highlighted the latest methods to improve the performance of an SGSP and facilitate its operation, such as the use of a magnetic field and the adoption of remote data acquisition, with the aim of expanding research and enhancing the benefit of this technology.
The conversion of the energy supply to renewable sources (wind, photovoltaics) will increase the volatility in electricity generation in the future. In order to ensure a balanced power balance in the power grid, storage is required - not only for a short time, but also seasonally. The bidirectional coupling of existing energy infrastructure with the power grid can help here by using the electricity in electrolysis systems to produce hydrogen. The hydrogen can be mixed with natural gas in the existing infrastructure (gas storage, pipelines) to a limited extent or converted directly to methane in a gas-catalytic reaction, methanation, with carbon dioxide and/or carbon monoxide. By using the natural gas infrastructure, the electricity grids are relieved and renewable energies can also be stored over long periods of time. Another advantage of this technology, known as “Power-to-Gas”, is that the methane produced in this way represents a sink for CO2 emissions, as it replaces fossil sources and CO2 is thus fed into a closed cycle.
Research in the field of Power-to-Gas technology is currently addressing technological advances both in the field of electrolysis and for the subsequent methanation, in particular to reduce investment costs. In the field of methanation, load-flexible processes are to be developed that are adapted to the fluctuating supply of hydrogen. The profitability of the Power-to-Gas process chain can be increased through synergistic integration into existing industrial processes. For example, an integrated smelting works offers a promising infrastructural environment, since, on the one hand, process gases containing carbon are produced in large quantities and, on the other hand, the oxygen as a by-product from the water electrolysis can be used directly. Such concepts suggest an economic application of Power-to-Gas technology in the near future.
The regulation of compressor extraction and energy storage can improve the performance of gas turbine energy system. In order to make the gas turbine system match the external load more flexibly and efficiently, a gas turbine cogeneration system with solar energy coupling compressor outlet extraction and energy storage is proposed. By establishing the variable condition mathematical model of air turbine, waste heat boiler and solar collector, we use Thermoflex software to establish the variable condition model of gas turbine compressor outlet extraction, and analyze the variable condition of the coupling system to study the changes of thermal parameters of the system in the energy storage, energy release and operation cycle. Taking the hourly load of a hotel in South China as an example, this paper analyzes the case of the cogeneration system of solar energy coupling compressor outlet extraction and energy storage, and compares it with the benchmark cogeneration system. The results show that taking a typical day as a cycle, the primary energy utilization rate of the system designed in this paper is 3.2% higher than that of the traditional cogeneration system, and the efficiency is 2.4% higher.
The fresh dried pollen of grape and seedless grape varieties were used as the research material. Each cultivar was stored at room temperature, 5 C, 0 C, -18 C and -40 C respectively. Sucrose 200g / L + boric acid 50mg / L + agar 8g / L as the nutrient substrate, and the comparative study on the germination and culture of the nuclear breed and the seedless cultivar. The results showed that the pollen viability decreased with the increase of storage time at different temperatures. The pollen viability decreased at -18 C and -40 , and the pollen viability decreased at the same temperature The There was a significant difference in pollen viability between different cultivars at the beginning of storage, and the pollen viability of the kernel breed was higher than that of the seedless grape.
The effects of different storage temperatures (2, 4 and 8 ℃) and their corresponding optimal heat treatment conditions on the quality, physiological and biochemical indexes of Cucumber Fruits during storage were studied by using the quadratic regression orthogonal rotation combination design. The effects of different storage temperatures (2, 4 and 8 ℃) and their corresponding optimal heat treatment conditions on the chilling injury, hardness, weightlessness rate, polyphenol oxidase (PPO), catalase (CAT), peroxidase (POD), H2O2, super oxygen anion free radical (O2-), ASA and GSH were determined. The results showed that heat treatment could inhibit chilling injury, while heat treatment combined with 4 ℃ low temperature storage could effectively inhibit the decline of fruit hardness and weight loss rate, delay the increase of peroxidase (POD) and polyphenol oxidase (PPO) activities, inhibit the increase of H2O2 and superoxide anion free radical O2- and significantly inhibit the browning of cucumber, delay the decline of ascorbic acid and maintain the content of GSH, it was beneficial to adjust the balance of active oxygen system. The results showed that under the storage condition of 4 ℃, the hot water treatment condition of cucumber was 39.4 ℃ and 24.3 min, which could delay the senescence of cucumber fruit and better maintain the quality of cucumber fruit.
This comprehensive review explores the forefront of nanohybrid materials, focusing on the integration of coordination materials in various applications, with a spotlight on their role in the development of flexible solar cells. Coordination material-based nanohybrids, characterized by their unique properties and multifunctionality, have garnered significant attention in fields ranging from catalysis and sensing to drug delivery and energy storage. The discussion investigates the synthesis methods, properties, and potential applications of these nanohybrids, underscoring their versatility in materials science. Additionally, the review investigates the integration of coordination nanohybrids in perovskite solar cells (PSCs), showcasing their ability to enhance the performance and stability of next-generation photovoltaic devices. The narrative further expands to encompass the synthesis of luminescent nanohybrids for bioimaging purposes and the development of layered, two-dimensional (2D) material-based nanostructured hybrids for energy storage and conversion. The exploration culminates in an examination of the synthesis of conductive polymer nanostructures, elucidating their potential in drug delivery systems. Last but not least, the article discusses the cutting-edge realm of flexible solar cells, emphasizing their adaptability and lightweight design. Through a systematic examination of these diverse nanohybrid materials, this review sheds light on the current state of the art, challenges, and prospects, providing valuable insights for researchers and practitioners in the fields of materials science, nanotechnology, and renewable energy.
Copyright © by EnPress Publisher. All rights reserved.