The relationship between transport infrastructure and accessibility has long stood as a central research area in regional and transport economics. Often invoked by governments to justify large public spending on infrastructure, the study of this relationship has led to conflicting arguments on the role that transport plays in productivity. This paper expands the existing body of knowledge by adopting a spatial analysis (with spillover effects) that considers the physical effects of investment in terms of accessibility (using distinct metrics). The authors have used the Portuguese experience at regional level over the last 30 years as a case study. The main conclusions are as follows: i) the choice of transport variables matters when explaining productivity, and more complex accessibility indicators are more correlated with; ii) it is important to account for spill-over effects; and iii) the evidence of granger causality is not widespread but depends on the regions.
Municipal authorities in industrialized and in developing countries face unceasingly the issues of congestion, insufficiency of transport means capacity, poor operability of transport systems and a growing demand for reliable and effective urban transport. While the expansion of infrastructure is generally considered as an undesirable option, in specific cases, when short links or ring roads are missing, new infrastructure projects may provide beneficial solutions. The upgrading and renewal of existing networks is always a challenge to the development of a modern city and the welfare of citizens. Central governance and management of transport systems, the establishment of smart and digital infrastructure, advanced surveillance and traffic monitoring, and intra-city energy-harvesting policy are some of the steps to be taken during the transition to a green and sustainable urban future.
Municipal authorities have also to consider other options and strategies to create a citizen-friendly setting for mobility: diminish the need for trips (digitalization of services, e-commerce, etc.), shift from private to public transport and transform the urban form to promote non-motorized transport in favor of the natural environment and public health. A citizen-friendly policy based on the anticipation of future needs and technological development seems to be a requisite for European cities searching for a smooth integration of their networks into urban space.
The idea of a smart city has evolved in recent years from limiting the city’s physical growth to a comprehensive idea that includes physical, social, information, and knowledge infrastructure. As of right now, many studies indicate the potential advantages of smart cities in the fields of education, transportation, and entertainment to achieve more sustainability, efficiency, optimization, collaboration, and creativity. So, it is necessary to survey some technical knowledge and technology to establish the smart city and digitize its services. Traffic and transportation management, together with other subsystems, is one of the key components of creating a smart city. We specify this research by exploring digital twin (DT) technologies and 3D model information in the context of traffic management as well as the need to acquire them in the modern world. Despite the abundance of research in this field, the majority of them concentrate on the technical aspects of its design in diverse sectors. More details are required on the application of DTs in the creation of intelligent transportation systems. Results from the literature indicate that implementing the Internet of Things (IoT) to the scope of traffic addresses the traffic management issues in densely populated cities and somewhat affects the air pollution reduction caused by transportation systems. Leading countries are moving towards integrated systems and platforms using Building Information Modelling (BIM), IoT, and Spatial Data Infrastructure (SDI) to make cities smarter. There has been limited research on the application of digital twin technology in traffic control. One reason for this could be the complexity of the traffic system, which involves multiple variables and interactions between different components. Developing an accurate digital twin model for traffic control would require a significant amount of data collection and analysis, as well as advanced modeling techniques to account for the dynamic nature of traffic flow. We explore the requirements for the implementation of the digital twin in the traffic control industry and a proper architecture based on 6 main layers is investigated for the deployment of this system. In addition, an emphasis on the particular function of DT in simulating high traffic flow, keeping track of accidents, and choosing the optimal path for vehicles has been reviewed. Furthermore, incorporating user-generated content and volunteered geographic information (VGI), considering the idea of the human as a sensor, together with IoT can be a future direction to provide a more accurate and up-to-date representation of the physical environment, especially for traffic control, according to the literature review. The results show there are some limitations in digital twins for traffic control. The current digital twins are only a 3D representation of the real world. The difficulty of synchronizing real and virtual world information is another challenge. Eventually, in order to employ this technology as effectively as feasible in urban management, the researchers must address these drawbacks.
This paper reviews and compares the opportunities and challenges in terms of port and intermodal development in China and India—the two fast-growing economic giants in the world. The study analyzes the future direction of these two countries’ port-hinterland intermodal development from the sustainability perspective. Both China and India face some major opportunities and challenges in port-hinterland intermodal development. The proposal of the Silk Road Economic Belt and the 21st-century Maritime Silk Road, also known as the Belt and Road Initiative (BRI), offers plentiful opportunities for China. A challenge for China is that its development of dry ports is still in the infancy stage and thus it is unable to catch up with the pace of rapid economic growth. As compared with China, India focuses more on the social aspect to protect the welfare of its residents, which in turn jeopardizes India’s port-hinterland intermodal development in the economic sense. The biggest challenge for India is its social institution, which would take a long time to change. These in-depth comparative analyses not only give the future direction of port-hinterland intermodal development in China and India but also provide references for other countries with similar backgrounds.
Copyright © by EnPress Publisher. All rights reserved.