The rapid growth of e-commerce in South Africa has increased the demand for efficient last-mile delivery. Motorcycle delivery drivers play a crucial role in the last-mile delivery process to bridge the gap between retailers and consumers. However, these drivers face significant challenges that impact both logistical efficiency and their socio-economic well-being. This study critically analyzes media narratives on the safety and working conditions of motorcycle delivery drivers in the e-commerce sector in South Africa. The thematic analysis of newspaper articles identified recurring themes. This study reveals critical safety and labor vulnerabilities affecting motorcycle delivery drivers in South Africa’s e-commerce sector. Key findings include heightened risks of violence, hijackings, and road accidents, exacerbated by inadequate infrastructure and safety gear. Coupled with low wages, job insecurity, and limited benefits, these conditions expose drivers to significant precarity. Policy interventions are urgently needed for driver safety and sustainable logistics. By integrating insights from multiple disciplines, this study offers a comprehensive understanding of the complex challenges within this rapidly growing sector.
Increasing the environmental friendliness of production systems is largely dependent on the effective organization of waste logistics within a single enterprise or a system of interconnected market participants. The purpose of this article is to develop and test a methodology for evaluating a data-based waste logistics model, followed by solutions to reduce the level of waste in production. The methodology is based on the principle of balance between the generation and beneficial use of waste. The information base is data from mandatory state reporting, which determines the applicability of the methodology at the level of enterprises and management departments. The methodology is presented step by step, indicating data processing algorithms, their convolution into waste turnover efficiency coefficients, classification of coefficient values and subsequent interpretation, typology of waste logistics models with access to targeted solutions to improve the environmental sustainability of production. The practical implementation results of the proposed approach are presented using the production example of chemical products. Plastics production in primary forms has been determined, characterized by the interorganizational use of waste and the return of waste to the production cycle. Production of finished plastic products, characterized by a priority for the sale of waste to other enterprises. The proposed methodology can be used by enterprises to diagnose existing models for organizing waste circulation and design their own economically feasible model of waste processing and disposal.
Segregating the scavenging processes from the lubrication methodology is a very effective way of improving two-stroke cycle engine durability. The application of stepped or twin diameter pistons is one such method that has repeatedly shown significantly greater durability over comparable crankcase scavenged engines together with an ability to operate on neat fuel without any added oil. This research study presents the initial results observed from a gasoline/indolene fuelled stepped piston engine ultimately intended for Hybrid Electric Vehicle and/or Range Extender Electric Vehicle application using hydrogen fuelling. Hydrogen fuelling offers the potential to significantly reduce emissions, with near zero emission operation possible, and overcoming the serious issues of range anxiety in modern transport solutions. The low environmental impact is discussed along with results from 1-d Computational Fluid Dynamic modelling. The engine type is a low-cost solution countering the financial challenges of powertrain duplication evident with Hybrid Electric and Range Extender Electric Vehicles.
Two kinds of solar thermal power generation systems (trough and tower) are selected as the research objects. The life cycle assessment (LCA) method is used to make a systematic and comprehensive environmental impact assessment on the trough and tower solar thermal power generation. This paper mainly analyzes the three stages of materials, production and transportation of two kinds of solar thermal power generation, calculates the unit energy consumption and environmental impact of the three stages respectively, and compares the analysis results of the two systems. At the same time, Rankine cycle is used to compare the thermal efficiency of the two systems.
Increasing levels of everyday cycling has many benefits for both individuals and for cities. Reduced traffic congestion, improved air quality and safer spaces for all vulnerable road users are among the significant benefits for urban developments. Despite this, public opposition to cycling infrastructure is common, particularly when it involves reprioritising road space for cycles instead of vehicles. The purpose of the research was to examine various stakeholders’ perspectives on proposed cycle infrastructure projects. This study utilised an innovative data collection approach through detailed content analysis of 322 public consultation submissions on a proposed active travel scheme in Limerick City, Ireland. By categorising submissions into support, opposition, and proposals, the study reveals the nuanced public perceptions that influence behavioural adaptation and acceptance of sustainable transport infrastructure. Supportive submissions, which outnumbered opposition-related submissions by approximately 2:1, emphasised the need for dedicated cycling infrastructure, enhanced cyclist safety, and potential improvements in environmental conditions. In contrast, opposition submissions focused on concerns over car parking removal, decreased accessibility for residents, and safety issues for vulnerable populations, particularly the elderly. Proposal submissions suggested design modifications, including enhanced safety features, provisions for convenient car parking, and alternative cycle routes. This paper highlights the value of structured public consultation data in uncovering behavioural determinants and barriers to cycling infrastructure adoption, offering policymakers essential insights into managing public opposition and fostering support. The methodology demonstrates how qualitative data from consultations can be effectively used to inform policy by capturing community-specific needs and enhancing the design of sustainable urban mobility systems. These findings underscore the need for innovative, inclusive data collection methods that reveal public sentiment, facilitating evidence-based transport policies that support climate-neutral mobility.
The business life cycle is examined through a comprehensive literature review in this academic study. Our initial approach involves searching for relevant articles on firm life cycle and strategy using the Web of Science and Scopus databases. We conduct bibliometric analyses to identify key contributors and recurring keywords. Subsequently, we select twenty-seven research papers to explore the Theory Development, Characteristics, Context, and Methodology (TCCM) framework for firm life cycle and strategy. Our analysis summarizes corresponding business strategies for each stage, including the use of Initial Management Control Systems (MCS) in the introduction phase. As companies grow, a high inventory-to-sales ratio may hinder effectiveness, but it proves beneficial in the growth and revival stages. Mature companies excel in green process innovation and engage more in Corporate Social Responsibility (CSR) activities. In the decline stage, firms use cost efficiencies, asset retrenchment, and core activity focus for recovery, signaling commitment to a successful turnaround. However, there is a research gap in exploring appropriate global strategies for various life cycle stages, providing an opportunity for additional articles to thoroughly investigate this relationship and assess multinational enterprises’ success trajectories throughout their life cycles.
Copyright © by EnPress Publisher. All rights reserved.