In this paper, a solar tracking device that can continuously track the sun by adjusting the direction and angle of the solar panel in real time is designed and fabricated to improve the power generation efficiency of the solar cell panel. The mechanical parts as well as the automatic control part of the passive sun-tracking system are described, and the efficiency enhancement with the sun-tracking solar panel is characterized in comparison with the fixed panel system. The test results show that in the spring season in Qingdao city of eastern China, the sun-tracking system can improve the solar cell power generation efficiency by 28.5%–42.9% when comparing to the direction and elevation angle fixed system in sunny days. Even in partly cloudy days, the PV power output can increased by 37% with using the passive sun-tracking system. Economic analysis results show the cost-benefit period is about 10 years, which indicates that the passive sun tracking device can substantially contribute to the solar energy harvest practices.
This paper examines the transformative potential of e-government in public administration, focusing on its capacity to enhance service delivery, transparency, accessibility, cost efficiency, and civic engagement. The study identifies key challenges, including inadequate technological infrastructure, cybersecurity vulnerabilities, resistance to change within public institutions, and a lack of public awareness about e-government services. These barriers hinder the seamless operation and adoption of digital government initiatives. Conversely, the study highlights significant opportunities such as streamlined service delivery, enhanced transparency through real-time access to government data, increased accessibility for marginalized and remote communities, substantial cost savings, and greater civic engagement via digital platforms. Addressing these challenges through targeted strategies—enhancing technological infrastructure, bolstering cybersecurity, managing organizational change, and raising public awareness—can help policymakers and public administrators implement more effective and inclusive e-government initiatives. Additionally, the integration of these digital solutions can drive sustainable development and digital inclusion, fostering social equity and economic growth. By leveraging these opportunities, governments can achieve more efficient, transparent, and accountable governance. Ultimately, the successful implementation of e-government can transform the relationship between citizens and the state, building trust and fostering a more participatory democratic process.
The main objective of this study was comparative advantages analysis at social price of Num-mango in the export channels. The examination of the domestic resource cost per shadow exchange rate (DRC/SER) ratio provides insights into the comparative advantage of the trading system in the Num-mango industry. A comprehensive study was conducted, with a total of 317 observations, with a specific emphasis on the significant individuals in Vinh Long, Vietnam. The comparative advantage of the Num-mango commerce system was inferred from a DRC/SER ratio below one, which may be attributed to the existence of two distinct export channels. The DRC/SER in export channel 1 exhibited values of 0.55, 0.67, and 0.53 over the three seasons. In season 1, export channel 2 had a score of 0.42, which then was 0.79 in season 2. The value of export channel 2 had a consistent upward trend during season 3, reaching its highest point of 0.3. It is recommended that regulators and governments provide export-focused incentives that prioritize the maximum comparative advantage. This study examines the concept of comparative advantage within export supply chains, specifically in relation to a diverse selection of tropical fruits and vegetables. Furthermore, it provides empirical evidence that supports the applicability and reliability of the Ricardian model.
Electricity generation around the world is mainly produced by using non-renewable energy sources especially in the commercial buildings. However, Rooftop solar Photovoltaic (PV) system produced a significant impact on environmental and economical benefits in comparison to the conventional energy sources, thus contributing to sustainable development. Such PV’s system encourages the production of electricity without greenhouse gas emissions that leads to a clean alternative to fossil fuels and economic prosperity even in less developed areas. However, efficiency of rooftop solar PV systems depends on many factors, the dominant being geographical (latitude, longitude, and solar intensity), environmental (temperature, wind, humidity, pollution, dust, rain, etc.) and the type of PV (from raw material extraction and procurement, to manufacturing, disposal, and/or recycling) used. During the feasibility analysis of the environment, geographical conditions are keep in well consideration, but the pollution level of the city is always overlooked, which significantly influences the performance of the PV installations.
Therefore, this research work focused on the performance of rooftop solar PV installed in one of the most polluted city in India. Here, the loss in power generation of rooftop solar PV has been studied for the effect of deposited dust particles, wind velocity before and after the cleaning of the panels. The actual data has been utilized for the calculation of the energy efficiency and power output of the PV systems. According to the results, it has been concluded that dust deposition, wind speed and pollution level in city significantly reduces the efficiency of solar photovoltaic panel. Hence, an overview of social and environmental impacts of PV technologies is presented in this paper along with potential benefits and pitfalls.
Copyright © by EnPress Publisher. All rights reserved.