Metal oxide-based nanohybrids have become multipurpose materials that connect basic nanoscience with useful technology uses. They are appealing for a variety of sectors, from biology to energy and environmental remediation, due to their tunable physicochemical features and synergistic interactions. The main synthesis approaches—physical, chemical, and green/biological—are presented in a cohesive manner in this review, emphasizing their benefits, drawbacks, scalability, and appropriateness for various application requirements. Characterization methods including spectroscopy, diffraction, and microscopy are presented as crucial connections that link final functional performance with structure, composition, and morphology in addition to being analytical instruments. Additionally, the review incorporates new advancements such as data-driven intelligent material design, sustainable synthesis utilizing microbes and plant extracts, and machine learning-assisted process optimization. All things considered, this work provides a coherent overview linking synthesis techniques, property assessment, and application potential, providing insights that can direct the future development of effective, environmentally friendly metal oxide nanohybrids designed for practical technological deployment.
This study aims to use dialectical thinking to explore the impacts and responses of Artificial Intelligence (AI) empowerment on students’ personalized learning. The effect of AI empowerment on student personalization is dissected through a literature review and empirical cases. The study finds that AI plays a significant role in promoting personalized learning by enhancing students’ learning effectiveness through intelligent recommendation, automated feedback, improving students’ independent learning ability, and optimizing learning paths, however, the wide application of AI also brings problems such as technological dependence, cheating in exams, weakening of critical thinking ability, educational fairness, and data privacy protection to students. The study proposes recommendations to strengthen technology regulation, enhance the synergy between teachers and AI, and optimize the personalized learning model. AI-enabled personalized learning is expected to play a greater role in improving learning efficiency and educational fairness.
Water splitting has gained significant attention as a means to produce clean and sustainable hydrogen fuel through the electrochemical or photoelectrochemical decomposition of water. Efficient and cost-effective water splitting requires the development of highly active and stable catalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Carbon nanomaterials, including carbon nanotubes, graphene, and carbon nanofibers, etc., have emerged as promising candidates for catalyzing these reactions due to their unique properties, such as high surface area, excellent electrical conductivity, and chemical stability. This review article provides an overview of recent advancements in the utilization of carbon nanomaterials as catalysts or catalyst supports for the OER and HER in water splitting. It discusses various strategies employed to enhance the catalytic activity and stability of carbon nanomaterials, such as surface functionalization, hybridization with other active materials, and optimization of nanostructure and morphology. The influence of carbon nanomaterial properties, such as defect density, doping, and surface chemistry, on electrochemical performance is also explored. Furthermore, the article highlights the challenges and opportunities in the field, including scalability, long-term stability, and integration of carbon nanomaterials into practical water splitting devices. Overall, carbon nanomaterials show great potential for advancing the field of water splitting and enabling the realization of efficient and sustainable hydrogen production.
Using the Intercultural Competence and Inclusion in Education Scale (ICIES), this study examines variations in intercultural competence and inclusion between mainstream and multiethnic high schools. The sample consisted of 384 high school students, aged 17 to 18, from both rural and urban areas in Western Romania, enrolled in grades 11 and 12. The ICIES demonstrated strong reliability, with a Cronbach’s alpha of 0.721. Exploratory factor analysis revealed three distinct dimensions: Intercultural opportunities and activities, Comfort in diverse settings, and Cultural reflection and values. Independent samples t-tests identified significant differences between mainstream and multiethnic schools across several items, with students in multiethnic schools reporting higher levels of intercultural competence and inclusion. These findings highlight the critical role of multicultural educational settings in fostering students' cultural awareness and inclusive attitudes. This study provides actionable insights for enhancing multicultural education practices and policies, including teacher training programs, inclusive curricula, and extracurricular initiatives that promote intercultural engagement and reduce intergroup biases.
Copyright © by EnPress Publisher. All rights reserved.