The direct expansion heat pump with solar energy is an energy conversion system used for water heating applications, air heating for air conditioning buildings, water desalination, solar drying, among others. This paper reviews the main designs and analysis of experiments in order to identify the fundamental objectives of any experiment which may be: to determine the factors that have a significant influence, to obtain a mathematical model and/or to optimize performance. To achieve this task, the basic and advanced configuration of this system is described in detail in order to characterize its thermal performance by means of energy analysis and/or exergy-based analysis. This review identifies possible lines of research in the area of design and analysis of experiments to develop this water heating technology for industrial applications.
The global significance of the energy crisis and the need for a sustainable European electricity system have intensified interest in renewable energy sources. This study aims to explore the attitudes toward solar energy systems among the population of the North Transdanubian region, which is crucial for companies in the region specializing in solar system installation. The research sheds light on trends in energy prices, potential strategies for addressing the energy crisis, and the regulatory environment for solar systems in Hungary and Austria, focusing on the Burgenland region. The study is divided into two main sections: secondary and primary research. The secondary research presents various applications of renewable energy sources, especially solar energy, and examines energy pricing trends in the two countries, with particular emphasis on the payback period and the impact of changes in energy prices. The primary research is also divided into two parts: the first examines the satisfaction of customers who already use solar systems, and the second focuses on the attitudes of potential customers toward solar investments. The findings provide a comprehensive view of both current users’ and prospective investors’ perspectives on solar energy systems. The practical significance of this research lies in identifying development opportunities for companies, advancing energy efficiency goals, and supporting sustainability efforts.
This study investigates the performance assessment of methanol and water as working fluid in a solar-powered vapour absorption refrigeration system. This research clarifies the system’s performance across a spectrum of operating conditions. Furthermore, the HAP software was utilized to determine and scrutinize the cooling load, facilitating a comparative analysis between software-based results and theoretical calculations. To empirically substantiate the findings, this research investigates methanol-water as a superior refrigerant compared to traditional ammonia- water and LiBr-water systems. Through experimental analysis and its comparison with previous research, the methanol-water refrigeration system demonstrated higher cooling efficiency and better environmental compatibility. The system’s performance was evaluated under varying conditions, showing that methanol-water has a 1% higher coefficient of performance (COP) compared to ammonia-water systems, proving its superior effectiveness in solar-powered applications. This empirical model acts as a pivotal tool for understanding the dynamic relationship between methanol concentration (40%, 50%, 60%) and system performance. The results show that temperature of the evaporator (5–15 ℃), condenser (30 ℃–50 ℃), and absorber (25 ℃–50 ℃) are constant, the coefficient of performance (COP) increases with increase in generator temperature. Furthermore, increasing the evaporator temperature while keeping constant temperatures for the generator (70 ℃–100 ℃), condenser, and absorber improves the COP. The resulting data provides profound insights into optimizing refrigerant concentrations for improved efficiency.
Copyright © by EnPress Publisher. All rights reserved.