Objectives: The unprecedented COVID-19 pandemic has intensified the stress on blood banks and deprived the blood sources due to the containment measures that restrict the movement and travel limitations among blood donors. During this time, Malaysia had a significant 40% reduction in blood supply. Blood centers and hospitals faced a huge challenge balancing blood demand and collection. The health care systems need a proactive plan to withstand the uncertain situation such as the COVID-19 pandemic. This study investigates the psychosocial factors that affect blood donation behavior during a pandemic and aims to propose evidence-based strategies for a sustainable blood supply. Study design: Qualitative design using focus group discussion (FGD) was employed. Methods: Data were acquired from the two FGDs that group from transfusion medicine specialists (N = 8) and donors (N = 10). The FGD interview protocol was developed based on the UTM Research Ethics Committee’s approval. Then, the data was analyzed using Nvivo based on the General Inductive Approach (GIA). Results: Analysis of the text data found that the psychology of blood donation during the pandemic in Malaysia can be classified into four main themes: (i) reduced donation; (ii) motivation of donating blood; (iii) trends of donation; and (iv) challenges faced by the one-off, occasional, and non-donors. Conclusions: Based on the emerging themes from the FGDs, this study proposes four psycho-contextual strategies for relevant authorities to manage sustainable blood accumulation during the pandemic: (1) develop standard operating procedure for blood donors; (2) organize awareness campaigns; (3) create a centralized integrated blood donors database; and (4) provide innovative Blood Donation Facilities.
Objectives: This research aimed to empirically examine the transformative impacts of Artificial Intelligence (AI) adoption on financial reporting quality in Jordanian banking, with internal controls as a hypothesized mediation mechanism. Methodology: Quantitative survey data was collected from 130 bank personnel. Multi-item reflective measures assessed AI adoption, internal controls, and financial reporting quality—structural equation modelling analysis relationships between constructs. Findings: The research tested four hypotheses grounded in agency and contingency theories. Confirmatory factor analysis demonstrated sound measurement models. Structural equation modelling revealed that AI adoption significantly transformed financial reporting quality. The mediating effect of internal controls on the AI-quality relationship was supported. Specifically, the path from AI adoption to quality was significant, indicating a positive impact. Despite internal controls strongly predicting quality, its mediating effect significantly shaped the degree of transformation driven by AI adoption. The indirect effect of AI on quality through internal controls was also significant. Findings imply a growing diffusion of AI applications in core financial reporting systems. Practical implications: Increasing AI applications focus on holistically transforming systems, reflecting committing adoption. Jordanian banks selectively leverage controls to moderate AI-induced transformations. Originality/value: This study provides essential real-world insights into how AI is adopted and impacts the Jordanian banking sector, a key player in a fast-evolving developing economy. By examining the role of internal controls, it deepens our understanding of how AI works in practice and offers practical advice for integrating technology effectively and improving information quality. Its mixed methods, unique context, and focus on AI’s impact on organizations significantly enrich academic literature. Recommendations: Banks should invest in integrated AI architectures, strategically strengthen critical controls to steer transformations, and incrementally translate AI innovations into core processes.
The paper examines the motivations, financing, expansion and challenges of the Belt and Road Initiative (BRI). The BRI was initially designed to address China’s overcapacity and promote economic growth in both China and in countries along the “Belt” and “Road” through infrastructure investment and industrial capacity cooperation. It took into account China’s strategic transition in its opening-up policy and foreign policy to pay more attention to the neighboring countries in Southeast Asia and Central and West Asia when facing greater strategic pressure from the United States in East Asia and the Pacific region. More themes have been added to the initiative’s original framework since its inception in 2013, including the vision of the BRI as China’s major solution to improve international economic cooperation and practice to build a “community of shared future for mankind”, and the idea of the Green Silk Road and the Digital Silk Road. Chinese state-owned enterprises and policy and commercial banks have dominated investment and financing for BRI projects, which explains the root of the problems and risks facing the initiative, such as unsustainable debt, non-transparency, corruption and low economic efficiency. Measures taken by China to tackle these problems, for example, mitigating the debt distress and improving debt sustainability, are unlikely to make a big difference anytime soon due to the tenacity of China’s long-held state-driven investment model.
The need to expand the range of banking services in Ukraine is stipulated with technological progress, the European integration processes and the legal regime of martial law introduced in the country. Under the conditions of war, the need to strengthen the security of banking activities and protect the banking system from the influence of any internal and external factors gains meaning. The topical direction of economic and legal research of scientists today is the possibility to introduce digital technologies with elements of artificial intelligence (AI) into the banking activity in Ukraine to improve its protection. The AI law as an independent branch of the Ukrainian law has not been developed so far. The sources of AI law, its functions, tasks, scope, risks and limits of legal responsibility for prohibited practices of artificial intelligence have not been defined. The purpose of the article is to analyze the theoretical and legal provisions that underpin the regulation of AI application in Ukrainian banking. The comparative legal method made it possible, considering the provisions of the draft law on AI of the European Union, to determine the trends in the development of the legal regulation of AI in Ukraine. Following the study, proposals to the legislation of Ukraine were formulated, which will contribute to the legal regulation of banking activities using digital technologies with elements of AI.
This study meticulously explores the crucial elements precipitating corporate failures in Taiwan during the decade from 1999 to 2009. It proposes a new methodology, combining ANOVA and tuning the parameters of the classification so that its functional form describes the data best. Our analysis reveals the ten paramount factors, including Return on Capital ROA(C) before interest and depreciation, debt ratio percentage, consistent EPS across the last four seasons, Retained Earnings to Total Assets, Working Capital to Total Assets, dependency on borrowing, ratio of Current Liability to Assets, Net Value Per Share (B), the ratio of Working Capital to Equity, and the Liability-Assets Flag. This dual approach enables a more precise identification of the most instrumental variables in leading Taiwanese firms to bankruptcy based only on financial rather than including corporate governance variable. By employing a classification methodology adept at addressing class imbalance, we substantiate the significant influence these factors had on the incidence of bankruptcy among Taiwanese companies that rely solely on financial parameters. Thus, our methodology streamlines variable selection from 95 to 10 critical factors, improving bankruptcy prediction accuracy and outperforming Liang’s 2016 results.
Copyright © by EnPress Publisher. All rights reserved.