In this work, the structural transformations of a suboxide vacuum-deposited film of SiO1.3 composition annealed in an inert atmosphere in a wide temperature range of 100 °C–1100 °C were characterized by the reflection-transmission spectroscopy technique. The experimental spectroscopic data were used to obtain the spectra of the absorption coefficient α(hν) in the absorption edge region of the film. Based on their processing, the dependences of Urbach energy EU and optical (Tauc) bandgap Eo on the annealing temperature were obtained. An assessment of the electronic band gap (mobility gap) Eg was also carried out. Analysis of these dependences allowed us to trace dynamics of thermally stimulated disproportionation of the suboxide film and the features of the formation of nanocomposites consisting of amorphous and/or crystalline silicon nanoparticles in an oxide matrix.
New telechelic polymers functionalized with terminal ethyl xanthate or vinyl groups were synthesized via cationic ring-opening polymerization (CROP). The polymerization of 2-ethyl-2-oxazoline (Etoxa) and 2-methoxycarbonylethyl-2-oxazoline (Esteroxa) was initiated by 1,4-trans-dibromobutene in acetonitrile at 78 ℃, with termination using either potassium ethyl xanthate or 4-vinylbenzyl-piperazine. Structural characterization by 1H and 13C NMR and FTIR spectroscopy confirmed the telechelic architecture. 1H NMR analysis revealed degrees of polymerization (DP) of 24–29 for ethyl xanthate-terminated polymers and 22–23 for vinyl-terminated polymers, consistent with theoretical values. The molar compositions of Etoxa and Esteroxa in all telechelic polymers matched the initial monomer feed ratios. End-group functionalization efficiency was quantified as follows: Ethyl xanthate-terminated polymers: 64%–82%, and vinyl-terminated polymers: 69% and 98% (for respective batches).
Diamond-like Nanocomposites (DLN) is a newly member in amorphous carbon (a:C) family. It consists of two or more interpenetrated atomic scale network structures. The amorphous silicon oxide (a:SiO) is incorporated within diamond-like carbon (DLC) matrix i.e. a:CH and both the network is interpenetrated by Si-C bond. Hence, the internal stress of deposited DLN film decreases remarkably compare to DLC. The diamond-like properties have come due to deform tetrahedral carbon with sp3 configuration and high ratio of sp3 to sp2 bond. The DLN has excellent mechanical, electrical, optical and tribological properties. Those properties of DLN could be varied over a wide range by changing deposition parameters, precursor and even post deposition treatment also. The range of properties are: Resistivity 10-4 to 1014 Ωcm, hardness 10–22 GPa, coefficient of friction 0.03-0.2, wear factor 0.2-0.4 10-7mm3/Nm, transmission Vis-far IR, modulus of elasticity 150-200 GPa, residual stress 200-300 Mpa, dielectric constant 3-9 and maximum operating temperature 600°C in oxygen environment and 1200°C in O2 free air. Generally, the PECVD method is used to synthesize the DLN film. The most common procedures used for investigation of structure and composition of DLN films are Raman spectroscopy, Fourier transformed infrared spectroscopy (FTIR), HRTEM, FESEM and X-ray photo electron spectroscopy (XPS). Interest in the coating technology has been expressed by nearly every industrial segment including automotive, aerospace, chemical processing, marine, energy, personal care, office equipment, electronics, biomedical and tool and die or in a single line from data to beer in all segment of life. In this review paper, characterization of diamond-like nanocomposites is discussed and subsequently different application areas are also elaborated.
Molybdenum (Mo) is considered and described as an essential element for living organisms’ development. Until now, no studies have been performed on genes involved in the Mo transporter in ancestral Ipomoea species. This study aimed to identify potential Mo genes in Ipomoea trifida and I. triloba genomes using bioinformatics tools. We identified four Mo transporter genes, two in I. trifida and two in I. triloba. Based on the RNA-seq datasets, we observed that Mo genes are expressed (in silico) and present different mechanisms between the tissues analyzed. The information generated in this study fills missing gaps in the literature on the Mo gene in an important agronomic crop.
Branched micro/nano Se was prepared by the redaction of L-Cys•HCl and H2SeO3 in hydrothermal method, as β-CD was used as soft template. The structures of products were characterized by SEM, TEM and XRD. Some important factors influencing the morphology of products were studied and discussed, including the amounts of soft template, the reaction temperature and the reaction time. The results showed that external causes had a potent effect on the morphology of micro/nano Se. The uniform branched micro/nano Se prepared under the optimal reaction condition was rhombohedral trigonal selenium t-Se0, but its crystallinity degree was low.
Introduction: In Colombia, the last oral health study showed that about 70% of the population has partial edentulism while 5.2% will have lost all their teeth between the age of 65 and 79. Rehabilitation with implants is an increasingly used option, which requires clinical and radiographic follow-up. Panoramic radiography is a low-cost option, in which it is possible to observe areas of bone loss, mesiodistal angulation of the implant, relationship with anatomical structures and lesions suggestive of peri-implantitis. Reports and analysis of relevant data on radiographic findings associated with dental implants are required to determine the risk factors for their success in patients who use them. Objective: To determine the prevalence and characterize the findings associated with osseointegration implants in panoramic radiographs. Methods: A descriptive cross-sectional observational study was carried out with 10,000 digital panoramic radiographs selected by convenience from radiological centers in the city of Bogota, Colombia, of which 543 corresponded to the sample analyzed for the presence of implants. The following were evaluated for each implant: location, position, angulation and distances to adjacent structures, using the Clínicalview® program (Orthopantomograph OP200D, Instrumentarium, USA). Results: The frequency of radiographs with implants was 5.43% with a total of 1,791 implants, with an average of 3.2 per radiograph. They were found in greater proportion in the upper jaw with a supracrestal location and an angulation of 10.3 degrees. 32% had implant/tooth or implant/implant distances that were less than optimal. 40.9% were restored and 1.2% showed lesions compatible with periimplantitis. Conclusions: A high percentage of the implants reviewed have a risk factor that affects their long-term viability, either due to angulation, supracrestal or crestal position, proximity to teeth or other implants, or because they are not restorable.
Copyright © by EnPress Publisher. All rights reserved.