1. Melo RAC, Amaro GB, da Silva GO, et al. Root production and quality attributes of sweetpotato genotypes in Brasília-DF, Brazil, during two cropping seasons. Colloquium Agrariae. 2020; 16(2): 90-95.
2. Muñoz-Rodríguez P, Carruthers T, Wells T, et al. The research behind a taxonomic monograph: a case study from Ipomoea (Convolvulaceae). Kew Bulletin. 2024; 79(4): 897-914.
3. Ugent D, Peterson LW. Archaeological Remains of Potato and Sweet Potato in Peru. Economic Botany. 1982; 36(2): 182-192.
4. Mitchell TC, Williams BRM, Wood JRI, et al. How the temperate world was colonised by bindweeds: biogeography of the Convolvuleae (Convolvulaceae). BMC Evolutionary Biology. 2016; 16(1).
5. de Castro Vendrame LP, Melo RAC, da Silva GO, et al. Sweet potato (Ipomoea batatas L. Lam.) cultivation and potentialities. In Varieties and Landraces: Cultural Practices and Traditional Uses (pp. 245-259). 2023. Academic Press.
6. Alam MK. A comprehensive review of sweet potato (Ipomoea batatas [L.] Lam): Revisiting the associated health benefits. Trends in Food Science & Technology. 2021; 115: 512-529.
7. Austin DF. The taxonomy, evolution and genetic diversity of sweet potatoes and related wild species. In: Exploration, maintenance, and utilization of sweetpotato genetic resources. International Potato Center; 1988.
8. Khan MIR, Nazir F, Maheshwari C, et al. Mineral nutrients in plants under changing environments: A road to future food and nutrition security. The plant genome. 2023; 16(4): e20362.
9. Akhtar K, Ain NU, Prasad PV, et al. Physiological, molecular, and environmental insights into plant nitrogen uptake, and metabolism under abiotic stresses. The plant genome. 2024; 17(2): e20461.
10. Wang Q, Li S, Li J, et al. The utilization and roles of nitrogen in plants. Forests. 2024; 15(7): 1191. doi: 10.3390/f15071191
11. Ge M, Zhong R, Sadeghnezhad E, et al. Genome-wide identification and expression analysis of magnesium transporter gene family in grape (Vitis vinifera). BMC Plant Biology. 2022; 22(1): 217.
12. Li G, Yang D, Hu Y, et al. Genome-wide identification and expression analysis of nitrate transporter (NRT) gene family in Eucalyptus grandis. Genes. 2024; 15(7): 930.
13. Omari Alzahrani F. Ammonium Transporter 1 (AMT1) Gene Family in Pomegranate: Genome-Wide Analysis and Expression Profiles in Response to Salt Stress. Current Issues in Molecular Biology. 2025; 47(1): 59.
14. Li H, Bao C, Xing H, et al. Genome-Wide Identification and Expression Assessment for the Phosphate Transporter 2 Gene Family Within Sweet Potato Under Phosphorus Deficiency Stress. International Journal of Molecular Sciences. 2025; 26(6): 2681.
15. Liu X, Li J, Luo D, et al. Genome-wide characterization of the NRT1 family members under cold stress in Coconut (Cocos nucifera L.). Scientia Horticulturae. 2025; 341, 113959.
16. Vatansever R, Filiz E, Ozyigit II. In silico identification and comparative analysis of molybdenum (Mo) transporter genes in plants. Brazilian Journal of Botany. 2015; 39(1): 87-99.
17. Huang XY, Hu DW, Zhao FJ. Molybdenum: More than an essential element. Verbruggen N, ed. Journal of Experimental Botany. 2021; 73(6): 1766-1774.
18. Leimkühler S. The biosynthesis of the molybdenum cofactors in Escherichia coli. Environmental microbiology, 2020; 22(6): 2007-2026.
19. Bittner F. Molybdenum metabolism in plants and crosstalk to iron. Frontiers in Plant Science. 2014; 5.
20. Hippler FWR, Boaretto RM, Dovis VL, et al. Revisiting nutrient management for Citrus production: to what extent does molybdenum affect nitrogen assimilation of trees? Scientia Horticulturae. 2017; 225: 462-470.
21. Mendel RR, Oliphant KD. The Final Step in Molybdenum Cofactor Biosynthesis—A Historical View. Molecules. 2024; 29(18): 4458.
22. Rana M, Bhantana P, Imran M, et al. Molybdenum potential vital role in plants metabolism for optimizing the growth and development. Annals of Environmental Science and Toxicology. 2020; 4(1): 032-044.
23. Mayr SJ, Mendel RR, Schwarz G. Molybdenum cofactor biology, evolution and deficiency. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2021; 1868(1): 118883.
24. Tejada-Jiménez M, Chamizo-Ampudia A, Galván A, et al. Molybdenum metabolism in plants. Metallomics. 2013; 5(9): 1191.
25. Arnon DI, Stout PR. Molybdenum as an essential element for higher plants. Plant Physiology. 1939; 14(3): 599-602.
26. Bavaresco LG, Silva SAF, de Souza SGH, et al. Molybdenum (Mo) transporter genes in Panicoideae species: a genome-wide evolution study. Journal of Crop Science and Biotechnology. 2022; 25(3): 277-287.
27. Tejada JM, Chamiso AA, Llamas A, et al. Roles of molybdenum in plants and improvement of its acquisition and use efficiency. In: Hossain MA, Kamiya T, Burritt DJ, et al. (editors). Plant micronutrient use efficiency. Molecular and genomic perspectives in crop plants. Academic Press; 2018.
28. Giovannuzzi S. Chapter 10—Molybdenum Enzymes; In: Supuran CT, Donald WABT-M (editors). Academic Press: Warsaw, Poland; 2024. pp. 557–580.
29. Gil-Díez P, Tejada-Jiménez M, León-Mediavilla J, et al. MtMOT1.2 Is Responsible for Molybdate Supply to Medicago Truncatula Nodules. Plant, Cell & Environment. 2019; 42, 310-320.
30. Hu D, Li M, Zhao, FJ, et al. The Vacuolar Molybdate Transporter OsMOT1;2 Controls Molybdenum Remobilization in Rice. Frontiers in Plant Science. 2022; 13: 863816.
31. Roychoudhury A, Chakraborty S. Cobalt and molybdenum transport in plants. In Metal and Nutrient Transporters in Abiotic Stress. Academic Press; 2021. pp. 199-211.
32. Zhao Q, Su X, Wang Y, et al. Structural Analysis of Molybdate Binding Protein ModA from Klebsiella Pneumoniae. Biochemical and Biophysical Research Communications. 2023; 681: 41-46.
33. Wang Z, Hong Y, Guo Z, et al. Natural variation in a molybdate transporter confers salt tolerance in tomato. Plant Physiology. 2025; 197(2): kiaf004.
34. Minner-Meinen R, Weber JN, Kistner S, et al. Physiological importance of molybdate transporter family 1 in feeding the molybdenum cofactor biosynthesis pathway in Arabidopsis thaliana. Molecules. 2022; 27(10): 3158.
35. Altschul S. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research. 1997; 25(17): 3389-3402.
36. Wilkins MR, Gasteiger E. Bairoch A, et al. Protein identification and analysis tools in the ExPASy server. Methods in Molecular Biology. 1999; 112: 531-52.
37. Chou KC, Shen HB. Plant-mPLoc: A Top-Down Strategy to Augment the Power for Predicting Plant Protein Subcellular Localization. Newbigin E, ed. PLoS ONE. 2010; 5(6): e11335.
38. Hu B, Jin J, Guo AY, et al. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics. 2014; 31(8): 1296-1297.
39. Bailey TL, Johnson J, Grant CE, et al. The MEME Suite. Nucleic Acids Research. 2015; 43(W1): W39-W49.
40. Nielsen H, Krogh A. Prediction of signal peptides and signal anchors by a hidden Markov model. In: Proceedings of the International Conference on Intelligent Systems for Molecular Biology; 1998.
41. Chao J, Li Z, Sun Y, et al. MG2C: a user-friendly online tool for drawing genetic maps. Molecular Horticulture. 2021; 1(1).
42. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution. 2016; 33(7): 1870-1874.
43. Huang Z, Zhong XJ, He J, et al. Genome-Wide Identification, Characterization, and Stress-Responsive Expression Profiling of Genes Encoding LEA (Late Embryogenesis Abundant) Proteins in Moso Bamboo (Phyllostachys edulis). Imai R, ed. PLOS ONE. 2016; 11(11): e0165953.
44. Chen C, Chen H, Zhang Y, et al. TBtools, a toolkit for biologists integrating various HTS-data handling tools with a user-friendly interface. Molecular Plant. 2020; 13(8): 1194-1202.
45. Kumar A, Singh B, Raigond P, et al. Phytic acid: Blessing in disguise, a prime compound required for both plant and human nutrition. Food Research International. 2021; 142: 110193.
46. Gasber A, Klaumann S, Trentmann O, et al. Identification of an Arabidopsis solute carrier critical for intracellular transport and inter‐organ allocation of molybdate. Plant Biology. 2011; 13(5): 710-718.
47. Ishikawa S, Hayashi S, Tanikawa H, et al. Tonoplast-Localized OsMOT1; 2 Participates in Interorgan Molybdate Distribution in Rice. Plant and Cell Physiology. 2021; 62(5): 913-921.
48. Baxter I, Muthukumar B, Park HC, et al. Variation in Molybdenum Content Across Broadly Distributed Populations of Arabidopsis thaliana Is Controlled by a Mitochondrial Molybdenum Transporter (MOT1). Bergelson J, ed. PLoS Genetics. 2008; 4(2): e1000004.
49. Rogozin IB, Wolf YI, Sorokin AV, et al. Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Current Biology. 2003; 13(17): 1512-1517.
50. Rogozin IB. Analysis of evolution of exon-intron structure of eukaryotic genes. Briefings in Bioinformatics. 2005; 6(2): 118-134.
51. Tejada-Jiménez M, Llamas Á, Sanz-Luque E, et al. A high-affinity molybdate transporter in eukaryotes. Proceedings of the National Academy of Sciences. 2007; 104(50): 20126-20130.
52. Compton ELR, Karinou E, Naismith JH, et al. Low Resolution Structure of a Bacterial SLC26 Transporter Reveals Dimeric Stoichiometry and Mobile Intracellular Domains. Journal of Biological Chemistry. 2011; 286(30): 27058-27067.
53. Freeling M. Bias in Plant Gene Content Following Different Sorts of Duplication: Tandem, Whole-Genome, Segmental, or by Transposition. Annual Review of Plant Biology. 2009; 60(1): 433-453.
54. Blanc G, Wolfe KH. Widespread Paleopolyploidy in Model Plant Species Inferred from Age Distributions of Duplicate Genes. The Plant Cell. 2004; 16(7): 1667-1678.
55. Papp B, Pál C, Hurst LD. Dosage sensitivity and the evolution of gene families in yeast. Nature. 2003; 424(6945): 194-197.
56. Li BZ, Merrick M, Li SM, et al. Molecular basis and regulation of ammonium transporter in rice. Rice Science. 2009; 16(4): 314-322.
57. De Smet R, Van de Peer Y. Redundancy and rewiring of genetic networks following genome-wide duplication events. Current Opinion in Plant Biology. 2012; 15(2): 168-176.
58. Smith AL, Hodkinson TR, Villellas J, et al. Global gene flow releases invasive plants from environmental constraints on genetic diversity. Proceedings of the National Academy of Sciences. 2020; 117(8): 4218-4227.
59. Wu S, Lau KH, Cao Q, et al. Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement. Nature Communications. 2018; 9(1).
60. Rashid M, Guangyuan H, Guangxiao Y, et al. AP2/ERF Transcription Factor in Rice: Genome-Wide Canvas and Syntenic Relationships between Monocots and Eudicots. Evolutionary Bioinformatics. 2012; 8.
61. Fernie AR, Tohge T. The Genetics of Plant Metabolism. Annual Review of Genetics. 2017; 51(1): 287-310.