In this paper, a solar tracking device that can continuously track the sun by adjusting the direction and angle of the solar panel in real time is designed and fabricated to improve the power generation efficiency of the solar cell panel. The mechanical parts as well as the automatic control part of the passive sun-tracking system are described, and the efficiency enhancement with the sun-tracking solar panel is characterized in comparison with the fixed panel system. The test results show that in the spring season in Qingdao city of eastern China, the sun-tracking system can improve the solar cell power generation efficiency by 28.5%–42.9% when comparing to the direction and elevation angle fixed system in sunny days. Even in partly cloudy days, the PV power output can increased by 37% with using the passive sun-tracking system. Economic analysis results show the cost-benefit period is about 10 years, which indicates that the passive sun tracking device can substantially contribute to the solar energy harvest practices.
The proposed scientific article aims to analyze the application of Lean Six Sigma in the food industry. To this end, a detailed methodology has been designed that ranges from the selection of the works to the synthesis and presentation of the results obtained. The methodology is based on rigorous inclusion criteria to ensure the relevance and quality of the selected sources, including books, academic articles, theses, and other relevant documents. Through extensive searches of academic databases and other reliable sources, key works were identified that specifically address the implementation of Lean Six Sigma in the context of food production. Once the relevant papers were collected, a critical analysis was conducted to identify common themes, trends, and key findings. The works were classified according to their main focus, such as process improvement, waste reduction, supply chain optimization and food safety assurance. This categorization allowed the information to be organized in a coherent way and to facilitate the synthesis of the results. The results obtained were presented in a table that included details about each selected work, such as title, author, year of publication, abstract and links to the original source. This structured and rigorous approach provides a clear and comprehensive view of the topic, contributing to the advancement of knowledge in this area and offering practical guidance for practitioners and researchers interested in the application of Lean Six Sigma in the food industry. The literature on Lean Six Sigma in the food industry highlights its importance in improving efficiency, quality, and safety. Key recommendations include gradual implementation, appropriate training, focus on quality, and continuous improvement.
This paper examines the transformative potential of e-government in public administration, focusing on its capacity to enhance service delivery, transparency, accessibility, cost efficiency, and civic engagement. The study identifies key challenges, including inadequate technological infrastructure, cybersecurity vulnerabilities, resistance to change within public institutions, and a lack of public awareness about e-government services. These barriers hinder the seamless operation and adoption of digital government initiatives. Conversely, the study highlights significant opportunities such as streamlined service delivery, enhanced transparency through real-time access to government data, increased accessibility for marginalized and remote communities, substantial cost savings, and greater civic engagement via digital platforms. Addressing these challenges through targeted strategies—enhancing technological infrastructure, bolstering cybersecurity, managing organizational change, and raising public awareness—can help policymakers and public administrators implement more effective and inclusive e-government initiatives. Additionally, the integration of these digital solutions can drive sustainable development and digital inclusion, fostering social equity and economic growth. By leveraging these opportunities, governments can achieve more efficient, transparent, and accountable governance. Ultimately, the successful implementation of e-government can transform the relationship between citizens and the state, building trust and fostering a more participatory democratic process.
To evaluate the efficiency of decision-making units, researchers continually develop models simulating the production process of organizations. This study formulates a network model integrating undesirable outputs to measure the efficiency of Vietnam’s banking industry. Employing methodologies from the data envelopment analysis (DEA) approach, the efficiency scores for these banks are subsequently computed and comparatively analyzed. The empirical results indicate that the incorporation of undesirable output variables in the efficiency evaluation model leads to significantly lower efficiency scores compared to the conventional DEA model. In practical terms, the study unveils a deterioration in the efficiency of banking operations in Vietnam during the post-Covid era, primarily attributed to deficiencies in credit risk management. These findings contribute to heightening awareness among bank managers regarding the pivotal importance of credit management activities.
2050 building stock might be buildings that already exist today. A large percentage of these buildings fail today’s energy performance standards. Highly inefficient buildings delay progress toward a zero-carbon-building goal (SDGs 7 and 13) and can lead to investments in renewable energy infrastructure. The study aims to investigate how bioclimatic design strategies enhance energy efficiency in selected orthopaedic hospitals in Nigeria. The study objective includes Identifying the bioclimatic design strategies that improve energy efficiency in orthopaedic hospitals, assessing the energy efficiency requirements in an orthopaedic hospital in Nigeria and analysing the effects of bioclimatic design strategies in enhancing energy efficiency in an orthopaedic hospital in Nigeria. The study engaged a mixed (qualitative and quantitative) research method. The investigators used case study research as a research design and a deductive approach as the research paradigm. The research employed a questionnaire survey for quantitative data while the in-depth Interview (IDI) guide and observation schedule for qualitative data. The findings present a relationship between bioclimatic design strategies and energy conservation practices in an orthopaedic hospital building. Therefore, implementing bioclimatic design strategies might enhance energy efficiency in hospital buildings. The result of the study revealed that bioclimatic hospital designs may cost the same amount to build but can save a great deal on energy costs. Despite the challenges, healthcare designers and owners are finding new ways to integrate bioclimatic design strategies into new healthcare construction to accelerate patient and planet healing.
Water scarcity, particularly in arid and semi-arid regions, is a critical issue affecting forest management. This study investigates the effects of drought stress on the water requirement and morphological characteristics of two important tree species Turkish pine and Chinaberry. Using a factorial design, the study examines the impact of three age stages (one-year-old, three-year-old, and five-year-old plants) and three levels of drought stress on these species. Microlysimeters of varying sizes were employed to simulate different drought conditions. Soil moisture was monitored to show the effect of the various irrigation schedules. The study also calculated reference crop evapotranspiration (ET0) using the PMF-56 method and developed plant coefficients (Kc) for the species. Results showed that evapotranspiration increased with soil moisture, peaking during summer and decreasing in winter. Turkish pine exhibited higher plant ET than Chinaberry, particularly among one-year-old seedlings. Drought stress significantly reduced evapotranspiration and water uses for both species, highlighting the importance of efficient water management in afforestation projects. The findings underscore the necessity of selecting drought-resistant species and optimizing irrigation practices to enhance the sustainability of green spaces in arid regions. These insights are crucial for improving urban forestry management and mitigating the impacts of water scarcity in Iran and similar climates globally.
Copyright © by EnPress Publisher. All rights reserved.