The integration of medical images is the process of registering and fusing them to obtain a greater amount of diagnostic information. In this work an analysis is performed for the integration of images obtained through computed axial tomography and magnetic resonance imaging, for which a tool was developed in the Matlab program, where the registration is implemented through equivalent features; in addition, the pairs of images are compared by several fusion rules, with a view to identify the best algorithm in which the resulting fused image contains the most information from the original representations.
Recently, carbon nanocomposites have garnered a lot of curiosity because of their distinctive characteristics and extensive variety of possible possibilities. Among all of these applications, the development of sensors with electrochemical properties based on carbon nanocomposites for use in biomedicine has shown as an area with potential. These sensors are suitable for an assortment of biomedical applications, such as prescribing medications, disease diagnostics, and biomarker detection. They have many benefits, including outstanding sensitivity, selectivity, and low limitations on detection. This comprehensive review aims to provide an in-depth analysis of the recent advancements in carbon nanocomposites-based electrochemical sensors for biomedical applications. The different types of carbon nanomaterials used in sensor fabrication, their synthesis methods, and the functionalization techniques employed to enhance their sensing properties have been discussed. Furthermore, we enumerate the numerous biological and biomedical uses of electrochemical sensors based on carbon nanocomposites, among them their employment in illness diagnosis, physiological parameter monitoring, and biomolecule detection. The challenges and prospects of these sensors in biomedical applications are also discussed. Overall, this review highlights the tremendous potential of carbon nanomaterial-based electrochemical sensors in revolutionizing biomedical research and clinical diagnostics.
Infrared thermal imaging technology is another new branch for medical imaging after traditional medical imaging technologies such as X-ray, ultrasound and magnetic resonance (MRI). It has the advantages of noninvasive, nondestructive, simple and fast. Its application can radiate multiple clinical departments. This paper mainly expounds the principle, influencing factors of medical infrared thermography and its application in radiation protection and other medical fields.
Metal iodide materials as novel components of thermal biological and medical systems at the interface between heat transfer techniques and therapeutic systems. Due to their outstanding heat transfer coefficients, biocompatibility, and thermally activated sensitivity, metal iodides like silver iodide (AgI), copper iodide (CuI), and cesium iodide (CsI) are considered to be useful in improving the performance of medical instruments, thermal treatment processes, and diagnostics. They are examined for their prospective applications in controlling thermal activity, local heating therapy, and smart temperature-sensitive drug carrier systems. In particular, their application in hyperthermia therapy for cancer treatment, infrared thermal imaging for diagnosis, and nano-based drug carriers points to a place for them in precision medicine. But issues of stability of materials used, biocompatibility, and control of heat—an essential factor that would give the tools the maximum clinical value—remain a challenge. The present mini-review outlines the emerging area of metal iodides and their applications in medical technologies, with a special focus on the pivotal role of these materials in enhancing non-invasive, efficient, and personalized medicine. Over time, metal iodide-based systems scouted a new era of thermal therapies and diagnostic instrumentation along with biomedical science as a whole.
The cost of diagnostic errors has been high in the developed world economics according to a number of recent studies and continues to rise. Up till now, a common process of performing image diagnostics for a growing number of conditions has been examination by a single human specialist (i.e., single-channel recognition and classification decision system). Such a system has natural limitations of unmitigated error that can be detected only much later in the treatment cycle, as well as resource intensity and poor ability to scale to the rising demand. At the same time Machine Intelligence (ML, AI) systems, specifically those including deep neural network and large visual domain models have made significant progress in the field of general image recognition, in many instances achieving the level of an average human and in a growing number of cases, a human specialist in the effectiveness of image recognition tasks. The objectives of the AI in Medicine (AIM) program were set to leverage the opportunities and advantages of the rapidly evolving Artificial Intelligence technology to achieve real and measurable gains in public healthcare, in quality, access, public confidence and cost efficiency. The proposal for a collaborative AI-human image diagnostics system falls directly into the scope of this program.
Simulation training in dental medical eduaction is a modern high-tech approach in providing quality higher education. Simulation training immerses students in realistic scenarios, allowing them to develop both technical and non-technical skills essential for effective patient care. This study highlights key contemporary issues in high-tech simulation training for dental education and consolidates its rationale and benefits. We searched the databases PubMed, Scopus, Web of Science, and ResearchGate. This review includes 36 articles published in English, Russian, and Ukrainian from 2020 to 2024. Non-peer-reviewed papers or those not published in indexed journals were not considered. Simulation training was found to impact integration of theory and practice, training a wide range of psychomotor skills, development of complex clinical competences, cultivating confidence, empathy and patient-oriented care, neuroplasticity of the brain and the cognitive load. Pedagogical benefits and the place of simulation training in the curriculum were also discussed.
Copyright © by EnPress Publisher. All rights reserved.