The study aims to investigate and analyse the social media, precisely the Instagram activity of several hotels in the city of Yogyakarta, Indonesia. Having been the second most popular destination besides Bali, it is mainly dominated by domestic tourism. Although several governmental institutions exist, the study focuses on the hotel’s activity only. The main purpose was to find, that after the classification of the posts, whether there is a more positive effect of one as opposed to the other type of posts. In addition, it was also important to see if with the time advancing positive effect of likes and comments appear and the relation of hashtags, likes and comments. Data was collected between 1st of January 2023. and 15th of July 2024. The first step was to collect posts done by the suppliers and then the posts were classified. Also, the number of hashtags used were collected. Second step was to collect the response from the demand side by gathering their likes and comments. Data then was analysed with SPSS 24 and JASP program. Results show that while there is no significance on increasing likes and comments with the months advancing, but in terms of the type of the posts there is. Promotional posts with other suppliers tend to bring a lot more comments and likes than self-promotional posts. This study’s main purpose to analyse through social media posts to enhance online networking by local suppliers promoting each other’s products.
The human brain has been described as a complex system. Its study by means of neurophysiological signals has revealed the presence of linear and nonlinear interactions. In this context, entropy metrics have been used to uncover brain behavior in the presence and absence of neurological disturbances. Entropy mapping is of great interest for the study of progressive neurodegenerative diseases such as Alzheimer’s disease. The aim of this study was to characterize the dynamics of brain oscillations in such disease by means of entropy and amplitude of low frequency oscillations from Bold signals of the default network and the executive control network in Alzheimer’s patients and healthy individuals, using a database extracted from the Open Access Imaging Studies series. The results revealed higher discriminative power of entropy by permutations compared to low-frequency fluctuation amplitude and fractional amplitude of low-frequency fluctuations. Increased entropy by permutations was obtained in regions of the default network and the executive control network in patients. The posterior cingulate cortex and the precuneus showed differential characteristics when assessing entropy by permutations in both groups. There were no findings when correlating metrics with clinical scales. The results demonstrated that entropy by permutations allows characterizing brain function in Alzheimer’s patients, and also reveals information about nonlinear interactions complementary to the characteristics obtained by calculating the amplitude of low frequency oscillations.
In Urban development, diversity respect is needed to prioritize and balance the urban development design for sustainable eco-city development. As a result, this research aimed to investigate the causal factor pathways of social network factors influencing sustainable eco-city development in the northeastern region of Thailand through a quantitative research approach. With the aim to survey insightful information, the analysis unit was conducted at the individual level with three hundred and eighty-three (383) samplings in Khon Kaen and Udon Thani provinces, including univariate analysis and multivariate analysis, using path analysis and multiple linear regression. The study results indicated that two pathways of social network factors influencing sustainable eco-city development were indirect influence factors. The indirect influence factor consists of information exchange, benefits exchange in the network, and members’ role in the social network. Additionally, the study revealed that the pathway has influences through social network types and the economic and social dimensions of sustainable cities (R2 = 0.330). Therefore, this study concluded that sustainable eco-city development should be implemented through community networks and economic and social network development for environmental development through social network types.
Food security presents a complex challenge that spans multiple sectors and levels, involving diverse stakeholders. Such a challenge necessitates collaborative efforts and the creation of shared value among participants. Through the lens of service-dominant logic (S-D logic), food security can be redefined to achieve a more comprehensive understanding and sheds light on the dynamic interplay among stakeholders, enabling the realization of potential value co-creation. As a theoretical contribution, this research addresses the gap in explaining stakeholder interactions. This aspect is crucial for fostering collaboration, and the study accomplishes this by leveraging Social Network Analysis to identify clusters and assign them roles as sub-orchestrators to support the National Food Agency as the main orchestrator who responsible to implement co-creation management strategy (involvement, curation, and empowerment). The study also proposes stakeholder roles in the context of food security: regulator, operator, dominator, niche player, and supporter. Moreover, the practical significance of this research is highly relevant to the early stages of the National Food Agency (NFA) since its establishment in 2021. As the NFA seeks optimal structure, networks, and resources to enhance Indonesia’s existing food system, the study offers valuable insights. This comprehensive study highlights key issues in developing food security in Indonesia and provides recommendations for overcoming future challenges.
Breast cancer was a prevalent form of cancer worldwide. Thermography, a method for diagnosing breast cancer, involves recording the thermal patterns of the breast. This article explores the use of a convolutional neural network (CNN) algorithm to extract features from a dataset of thermographic images. Initially, the CNN network was used to extract a feature vector from the images. Subsequently, machine learning techniques can be used for image classification. This study utilizes four classification methods, namely Fully connected neural network (FCnet), support vector machine (SVM), classification linear model (CLINEAR), and KNN, to classify breast cancer from thermographic images. The accuracy rates achieved by the FCnet, SVM, CLINEAR, and k-nearest neighbors (KNN) algorithms were 94.2%, 95.0%, 95.0%, and 94.1%, respectively. Furthermore, the reliability parameters for these classifiers were computed as 92.1%, 97.5%, 96.5%, and 91.2%, while their respective sensitivities were calculated as 95.5%, 94.1%, 90.4%, and 93.2%. These findings can assist experts in developing an expert system for breast cancer diagnosis.
The US Infrastructure Investment and Job Act (IIJA), also commonly referred to as the Bipartisan Infrastructure Bill, passed in 2021, has drawn international attention. It aims to help to rebuild US infrastructure, including transportation networks, broadband, water, power and energy, environmental protection and public works projects. An estimated $1.2 trillion in total funding over ten years will be allocated. The Bipartisan Infrastructure Bill is the largest funding bill for US infrastructure in the recent history of the United States. This review article will specifically discuss funding allocations for roads and bridges, power and grids, broadband, water infrastructure, airports, environmental protection, ports, Western water infrastructure, electric vehicle charging stations and electric school buses in the new spending of the Infrastructure Investment and Job Act and why these investments are urgently necessary. This article will also briefly discuss the views of think tank experts, the public policy perspectives, the impact on domestic and global arenas of the new spending in the IIJA, and the public policy implications.
Copyright © by EnPress Publisher. All rights reserved.