Outsourcing logistics operations is a common trend as businesses prioritize core activities. Establishing a sustainable partnership between businesses and logistics service providers requires a systematic approach. This study is needed to develop a more effective and adaptive framework for logistics service provider selection by integrating diverse criteria and decision-making methodologies, ultimately enhancing the precision and sustainability of procurement processes. This study advocate for leveraging industry-based knowledge in procurement, emphasizing the need to define decision-making elements. The research analyzes nearly 300 logistics procurement projects, using a neural network-based methodology to propose a model that aids businesses in identifying optimal criteria for evaluating logistics service providers based on extensive industry knowledge. The goal of this study is to develop and test a practical model that would support businesses in choosing most suitable criteria for selection of logistics service providers based on cumulative market patterns. The results of this study are as follows. It introduces novel elements by gathering and systematizing unique market data using developed data processing methodology. It innovatively classifies decision-making elements, allocating them into distinct groups for use as features in a neural network. The study further contributes by developing and training a predictive model based on a prepared dataset, addressing pre-defined goals, expectations related to green logistics, and specific requirements in the tendering process for selecting logistics service providers. Study is concluded by summarizing suggestions for future research in area of adopting neural networks for selection of logistics service providers.
Surveys are one of the most important tasks to be executed to get valued information. One of the main problems is how the data about many different persons can be processed to give good information about their environment. Modelling environments through Artificial Neural Networks (ANNs) is highly common because ANN’s are excellent to model predictable environments using a set of data. ANN’s are good in dealing with sets of data with some noise, but they are fundamentally surjective mathematical functions, and they aren’t able to give different results for the same input. So, if an ANN is trained using data where samples with the same input configuration has different outputs, which can be the case of survey data, it can be a major problem for the success of modelling the environment. The environment used to demonstrate the study is a strategic environment that is used to predict the impact of the applied strategies to an organization financial result, but the conclusions are not limited to this type of environment. Therefore, is necessary to adjust, eliminate invalid and inconsistent data. This permits one to maximize the probability of success and precision in modeling the desired environment. This study demonstrates, describes and evaluates each step of a process to prepare data for use, to improve the performance and precision of the ANNs used to obtain the model. This is, to improve the model quality. As a result of the studied process, it is possible to see a significant improvement both in the possibility of building a model as in its accuracy.
Accurate prediction of US Treasury bond yields is crucial for investment strategies and economic policymaking. This paper explores the application of advanced machine learning techniques, specifically Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) models, in forecasting these yields. By integrating key economic indicators and policy changes, our approach seeks to enhance the precision of yield predictions. Our study demonstrates the superiority of LSTM models over traditional RNNs in capturing the temporal dependencies and complexities inherent in financial data. The inclusion of macroeconomic and policy variables significantly improves the models’ predictive accuracy. This research underscores a pioneering movement for the legacy banking industry to adopt artificial intelligence (AI) in financial market prediction. In addition to considering the conventional economic indicator that drives the fluctuation of the bond market, this paper also optimizes the LSTM to handle situations when rate hike expectations have already been priced-in by market sentiment.
Accurate demand forecasting is key for companies to optimize inventory management and satisfy customer demand efficiently. This paper aims to Investigate on the application of generative AI models in demand forecasting. Two models were used: Long Short-Term Memory (LSTM) networks and Variational Autoencoder (VAE), and results were compared to select the optimal model in terms of performance and forecasting accuracy. The difference of actual and predicted demand values also ascertain LSTM’s ability to identify latent features and basic trends in the data. Further, some of the research works were focused on computational efficiency and scalability of the proposed methods for providing the guidelines to the companies for the implementation of the complicated techniques in demand forecasting. Based on these results, LSTM networks have a promising application in enhancing the demand forecasting and consequently helpful for the decision-making process regarding inventory control and other resource allocation.
Among contemporary computational techniques, Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) are favoured because of their capacity to tackle non-linear modelling and complex stochastic datasets. Nondeterministic models involve some computational intricacies when deciphering real-life problems but always yield better outcomes. For the first time, this study utilized the ANN and ANFIS models for modelling power generation/electric power output (EPO) from databases generated in a combined cycle power plant (CCPP). The study presents a comparative study between ANNs and ANFIS to estimate the power output generation of a combined cycle power plant in Turkey. The inputs of the ANN and ANFIS models are ambient temperature (AT), ambient pressure (AP), relative humidity (RH), and exhaust vacuum (V), correlated with electric power output. Several models were developed to achieve the best architecture as the number of hidden neurons varied for the ANNs, while the training process was conducted for the ANFIS model. A comparison of the developed hybrid models was completed using statistical criteria such as the coefficient of determination (R2), mean average error (MAE), and average absolute deviation (AAD). The R2 of 0.945, MAE of 3.001%, and AAD of 3.722% for the ANN model were compared to those of R2 of 0.9499, MAE of 2.843% and AAD of 2.842% for the ANFIS model. Even though both ANN and ANFIS are relevant in estimating and predicting power production, the ANFIS model exhibits higher superiority compared to the ANN model in accurately estimating the EPO of the CCPP located in Turkey and its environment.
Copyright © by EnPress Publisher. All rights reserved.