Plastic products are items that we use every day around us, and their replacement speed are very fast, so that to recycle waste plastic has become the focus of environmental problems. This study has proposed an optimized circular design for the recycle plant of waste plastic, therefore, and our proposed strategy is to build a new tertiary recycling plant to reduce the total generation amount of the derived solid plastic waste from ordinary and secondary recycling plants and the semi-finished products from secondary recycling plant. Results obtained from a real recycle plant has showed that to recycle the tertiary waste plastic in a tertiary recycling plant, the finished products produced from a secondary recycling plant accounts about 27% of ordinary waste plastic, and the semi-finished products that mainly is scrap hardware accounts about 1% of ordinary waste plastic. Other derived solid plastic waste accounts for 6% of ordinary plastic waste. Therefore, if the ordinary, secondary and tertiary recycle plant can be set all-in-one, it can reduce the total generation amount of derived solid plastic waste from 34% to 6%, without and with a tertiary recycling plant, respectively. It can also increase the operating income of the secondary recycle plant and the investment willingness of the new tertiary recycle plant.
Fire, a phenomenon occurs in most parts of the world and causes severe financial losses, even, irreparable damages. Many parameters are involved in the occurrence of a fire; some of which are constant over time (at least in a fire cycle), but the others are dynamic and vary over time. Unlike the earthquake, the disturbance of fire depends on a set of physical, chemical, and biological relations. Monitoring the changes to predict the occurrence of fire is efficient in forest management. Method: In this research, the Persian and English databases were structurally searched using the keywords of fire risk modeling, fire risk, fire risk prediction, remote sensing and the reviewed papers that predicted the fire risk in the field of remote sensing and geographic information system were retrieved. Then, the modeling and zoning data of fire risk prediction were extracted and analyzed in a descriptive manner. Accordingly, the study was conducted in 1995-2017. Findings: Fuzzy analytic hierarchy process (AHP) zoning method was more practical among the applied methods and the plant moisture stress measurement was the most efficient among the remote sensing indices. Discussion and Conclusion: The findings indicate that RS and GIS are effective tools in the study of fire risk prediction.
Heat removal has become an increasingly crucial issue for microelectronic chips due to increasingly high speed and high performance. One solution is to increase the thermal conductivity of the corresponding dielectrics. However, traditional approach to adding solid heat conductive nanoparticles to polymer dielectrics led to a significant weight increase. Here we propose a dielectric polymer filled with heat conductive hollow nanoparticles to mitigate the weight gain. Our mesoscale simulation of heat conduction through this dielectric polymer composite microstructure using the phase-field spectral iterative perturbation method demonstrates the simultaneous achievement of enhanced effective thermal conductivity and the low density. It is shown that additional heat conductivity enhancement can be achieved by wrapping the hollow nanoparticles with graphene layers. The underlying mesoscale mechanism of such a microstructure design and the quantitative effect of interfacial thermal resistance will be discussed. This work is expected to stimulate future efforts to develop light-weight thermal conductive polymer nanocomposites.
Using the United Nations’ Online Services Indicator (OSI) as a benchmark, the study analyzes Jordan’s e-government performance trends from 2008 to 2022, revealing temporal variations and areas of discontent. The research incorporates diverse testing strategies, considering technological, organizational, and environmental factors, and aligns with global frameworks emphasizing usability, accessibility, and security. The proposed model unfolds in three stages: data collection, performing data operations, and target selection using the Generalized Linear Model (GLM). Leveraging web crawling techniques, the data collection process extracts structured information from the Jordanian e-government portal. Results demonstrate the model’s efficacy in assessing accessibility and predicting web crawler behavior, providing valuable insights for policymakers and officials. This model serves as a practical tool for the enhancement of e-government services, addressing citizen concerns and improving overall service quality in Jordan and beyond.
To gain a deep understanding of maintenance and repair planning, investigate the weak points of the distribution network, and discover unusual events, it is necessary to trace the shutdowns that occurred in the network. Many incidents happened due to the failure of thermal equipment in schools. On the other hand, the most important task of electricity distribution companies is to provide reliable and stable electricity, which minimal blackouts and standard voltage should accompany. This research uses seasonal time series and artificial neural network approaches to provide models to predict the failure rate of one of the equipment used in two areas covered by the greater Tehran electricity distribution company. These data were extracted weekly from April 2019 to March 2021 from the ENOX incident registration software. For this purpose, after pre-processing the data, the appropriate final model was presented with the help of Minitab and MATLAB software. Also, average air temperature, rainfall, and wind speed were selected as input variables for the neural network. The mean square error has been used to evaluate the proposed models’ error rate. The results show that the time series models performed better than the multi-layer perceptron neural network in predicting the failure rate of the target equipment and can be used to predict future periods.
Copyright © by EnPress Publisher. All rights reserved.