Two-dimensional hexagonal boron nitride nanosheets (h-BNNS) were synthesized on silver (Ag) substrates via a scalable, room-temperature atmospheric pressure plasma (APP) technique, employing borazine as a precursor. This approach overcomes the limitations of conventional chemical vapor deposition (CVD), which requires high temperatures (>800 °C) and low pressures (10⁻2 Pa). The h-BNNS were characterized using FT-IR spectroscopy, confirming the presence of BN functional groups (805 cm⁻1 and 1632 cm⁻1), while FESEM/EDS revealed uniform nanosheet morphology with reduced particle size (80.66 nm at 20 min plasma exposure) and pore size (28.6 nm). XRD analysis demonstrated high crystallinity, with prominent h-BN (002) and h-BN (100) peaks, and Scherrer calculations indicated a crystallite size of ~15 nm. The coatings exhibited minimal disruption to UV-VIS reflectivity, maintaining Ag’s optical properties. Crucially, Vickers hardness tests showed a 39% improvement (38.3 HV vs. 27.6 HV for pristine Ag) due to plasma-induced cross-linking and interfacial adhesion. This work establishes APP as a cost-effective, eco-friendly alternative for growing h-BNNS on temperature-sensitive substrates, with applications in optical mirrors, corrosion-resistant coatings, energy devices and gas sensing.
Static atomic charges affect key ground-state parameters of quasi-planar boron clusters Bn, n ≤ 20, which serve as building blocks of borophenes and other two-dimensional boron-based materials promising for various advanced applications. Assuming that the outer valence shells partial electron density of the constituent B atoms are shared between them proportionally to their coordination numbers, the static atomic charges in small planar boron clusters in the electrically neutral and positively and negatively singly charged states are estimated to be in the ranges of –0.750e (B70) to +0.535e (B200), –0.500e (B7+, B8+, and B9+) to +0.556e (B17+), and –1.000e (B7–) to +0.512e (B20–), respectively.
Copyright © by EnPress Publisher. All rights reserved.