The micro staring hyperspectral imager can simultaneously acquire two spatial and one spectral images, and only record the external orientation elements of the entire hyperspectral image rather than the external orientation elements of each frame of the image, which avoids the geometric instability during scanning, effectively solves the problem of large geometric deformation of the small line scanning hyperspectral imager, and is suitable for the small UAV load platform with unstable attitude. At present, most of the research focuses on the radio-metric correction method of line scan hyperspectral imager. The application time of staring hyperspectral imager is short, and there is no mature data processing re-search at home and abroad, which hinders the application of UAV micro staring hyperspectral imaging system. In this paper, the calibration method of the linearity and variability of the radiation response of the micro staring hyperspectral imager on the UAV is studied, and the effectiveness of this method is quantitatively evaluated. The results show that the hyperspectral image has obvious vignetting effect and strip phenomenon before the correction of radiation response variability. After the correction, the radiation response variation coefficient of pixels in different bands decreases significantly, and the vignetting effect and image strip decrease significantly. In this paper, a multi-target radiometric calibration method is proposed, and the accuracy of radiometric calibration is verified by comparing the calibrated hyperspectral image spectrum with the measured ground object spectrum of the ground spectrometer. The results show that the calibration results of the multi-target radiometric calibration method show better results, especially for the near-infrared band, and the difference with the surface reflectance measured by the spectrometer is small.
Introduction: Stenoses in the path of arteriovenous fistulas (AVF) for hemodialysis are a very prevalent problem and there is long experience in their treatment by percutaneous angioplasty (PTA). These procedures, however, involve non-negligible equipment requirements, exposure to radiation and intravenous contrast that are not beneficial for the patient and make their performance more complex. This study reviews our initial experience with Doppler ultrasound-guided angioplasty. Methods: Prospective cohort of patients with native AVF dysfunction due to significant venous stenosis treated by Doppler echo-guided PTA. AVF puncture, lesion catheterization, balloon localization and inflation, and outcome verification were performed under ultrasound guidance. Only one fistulography was performed before and another one after dilatation. As a control, the cases performed during the same period by the usual angiographic method were also collected. Results: Between February 2015 and September 2018, 51 PTAs were performed on native AVF, of which 27 were echogenic (mean age, 65.3 years; 63% male). The technical success rate was 96%. In 26% of cases, PTA was repeated due to residual stenosis after angiographic imaging. There were 7.3% periprocedural complications. 92% of the AVFs were punctured at 24 hours. Primary patency at 1 month, 6 months and 1 year was 100%, 64.8% and 43.6%, and assisted patency was 100%, 87.2% and 74.8%. There were no significant differences in immediate or late results with respect to angiographically guided AVF angioplasty. Conclusions: AVF-PTA can be performed safely and effectively guided by Doppler ultrasound, which simplifies the logistics required for its performance, although we still need to improve the capacity for early verification of the result with this imaging technique.
Objective: to determine the diagnostic performance of magnetic resonance hysterosalpingography (HSG-MRI), using laparoscopy as the reference method. Materials and methods: 22 patients were included. All underwent HSG-MRI with a 1.5 Tesla resonator and then laparoscopy with chromotubation. Two radiologists examined the MRIs, determining tubal patency by consensus. Descriptive and diagnostic performance analyses were performed. Results: HSG-MRI had a success rate of 91%. Study duration was 49 ± 15 minutes, volume injected 26 ± 16 cm3 and pain scale 30 ± 19 out of 100. Sensitivity and specificity of HSG-MRI were 100% for global and left Cotte test, and 25% and 93.3% for right Cotte test, respectively. There were 2 minor complications and no major complications. Discussion: our initial results demonstrated high sensitivity and specificity. Although other studies analyzed the ability of HSG-MRI to assess tubal patency with good results, the use of a flawed reference standard left room for reasonable doubt, preventing a recommendation based on solid evidence. However, when comparing our results with those published, we observed a high degree of concordance insofar as the positive effusion is correctly diagnosed with a specificity of 100% or with a percentage close to this figure.
Introduction: Chest trauma has a high incidence and pneumothorax is the most frequent finding. The literature is scarce on what to do with asymptomatic patients with pneumothorax due to penetrating chest trauma. The aim of this study was to evaluate what are the findings of the control radiography of patients with penetrating chest trauma who are not initially taken to surgery, and their usefulness in determining the need for further treatment. Methods: A retrospective cohort study was performed, including patients older than 15 years who were admitted for penetrating chest trauma between January 2015 and December 2017 and who did not require initial surgical management. We analyzed the results of chest radiography, the time of its acquisition, and the behavior decided according to the findings in patients initially left under observation. Results: A total of 1,554 patients were included, whose average age was 30 years, 92.5% were male and 97% had a sharp weapon wound. Of these, 186 (51.5%) had no alterations in their initial X-ray, 142 had pneumothorax less than 30% and 33 had pneumothorax greater than 30 %, hemopneumothorax or hemothorax. Closed thoracostomy was required as the final procedure in 78 cases, sternotomy or thoracotomy in 2 cases and discharged in 281. Conclusion: In asymptomatic patients with small or moderate pneumothorax and no other significant lesions, longer observation times, radiographs and closed thoracostomy may be unnecessary.
Background: Through the development of robust techniques and their comprehensive validation, cardiac magnetic resonance imaging (CMR) has developed a wide range of indications in its almost 25 years of clinical use. The recording of cardiac volumes and systolic ventricular function as well as the characterization of focal myocardial scars are now part of standard CMR imaging. Recently, the introduction of accelerated image acquisition technologies, the new imaging methods of myocardial T1 and T2 mapping and 4-D flow measurements, and the new post-processing technique of myocardial feature tracking have gained relevance. Method: This overview is based on a comprehensive literature search in the PubMed database on new CMR techniques and their clinical application. Results and conclusion: This article provides an overview of the latest technical developments in the field of CMR and their possible applications based on the most important clinical questions.
Problem: in recent years, new studies have been published on biological effects of strong static magnetic fields and on thermal effects of high-frequency electromagnetic fields as used in magnetic resonance imaging (MRI). Many of these studies have not yet been incorporated into current safety recommendations. Method: scientific publications from 2010 onwards on the biological effects of static and electromagnetic fields of MRI were searched and evaluated. Results: new studies confirm older work that has already described effects of static magnetic fields on sensory organs and the central nervous system accompanied by sensory perception. A new result is the direct effect of Lorentz forces on ionic currents in the semicircular canals of the vestibular organ. Recent studies on thermal effects of radiofrequency fields focused on the development of anatomically realistic body models and more accurate simulation of exposure scenarios. Recommendation for practice: strong static magnetic fields can cause unpleasant perceptions, especially dizziness. In addition, they can impair the performance of the medical personnel and thus potentially endanger patient safety. As a precaution, medical personnel should move slowly in the field gradient. High-frequency electromagnetic fields cause tissues and organs to heat up in patients. This must be taken into account in particular for patients with impaired thermoregulation as well as for pregnant women and newborns; exposure in these cases must be kept as low as possible.
Copyright © by EnPress Publisher. All rights reserved.