The regulation of compressor extraction and energy storage can improve the performance of gas turbine energy system. In order to make the gas turbine system match the external load more flexibly and efficiently, a gas turbine cogeneration system with solar energy coupling compressor outlet extraction and energy storage is proposed. By establishing the variable condition mathematical model of air turbine, waste heat boiler and solar collector, we use Thermoflex software to establish the variable condition model of gas turbine compressor outlet extraction, and analyze the variable condition of the coupling system to study the changes of thermal parameters of the system in the energy storage, energy release and operation cycle. Taking the hourly load of a hotel in South China as an example, this paper analyzes the case of the cogeneration system of solar energy coupling compressor outlet extraction and energy storage, and compares it with the benchmark cogeneration system. The results show that taking a typical day as a cycle, the primary energy utilization rate of the system designed in this paper is 3.2% higher than that of the traditional cogeneration system, and the efficiency is 2.4% higher.
The conversion of the energy supply to renewable sources (wind, photovoltaics) will increase the volatility in electricity generation in the future. In order to ensure a balanced power balance in the power grid, storage is required - not only for a short time, but also seasonally. The bidirectional coupling of existing energy infrastructure with the power grid can help here by using the electricity in electrolysis systems to produce hydrogen. The hydrogen can be mixed with natural gas in the existing infrastructure (gas storage, pipelines) to a limited extent or converted directly to methane in a gas-catalytic reaction, methanation, with carbon dioxide and/or carbon monoxide. By using the natural gas infrastructure, the electricity grids are relieved and renewable energies can also be stored over long periods of time. Another advantage of this technology, known as “Power-to-Gas”, is that the methane produced in this way represents a sink for CO2 emissions, as it replaces fossil sources and CO2 is thus fed into a closed cycle.
Research in the field of Power-to-Gas technology is currently addressing technological advances both in the field of electrolysis and for the subsequent methanation, in particular to reduce investment costs. In the field of methanation, load-flexible processes are to be developed that are adapted to the fluctuating supply of hydrogen. The profitability of the Power-to-Gas process chain can be increased through synergistic integration into existing industrial processes. For example, an integrated smelting works offers a promising infrastructural environment, since, on the one hand, process gases containing carbon are produced in large quantities and, on the other hand, the oxygen as a by-product from the water electrolysis can be used directly. Such concepts suggest an economic application of Power-to-Gas technology in the near future.
Cobalt-ion batteries are considered a promising battery chemistry for renewable energy storage. However, there are indeed challenges associated with co-ion batteries that demonstrate undesirable side reactions due to hydrogen gas production. This study demonstrates the use of a nanocomposite electrolyte that provides stable performance cycling and high Co2+ conductivity (approximately 24 mS cm−1). The desirable properties of the nanocomposite material can be attributed to its mechanical strength, which remains at nearly 68 MPa, and its ability to form bonds with H2O. These findings offer potential solutions to address the challenges of co-dendrite, contributing to the advancement of co-ion batteries as a promising battery chemistry. The exceptional cycling stability of the co-metal anode, even at ultra-high rates, is a significant achievement demonstrated in the study using the nanocomposite electrolyte. The co-metal anode has a 3500-cycle current density of 80 mA cm−2, which indicates excellent stability and durability. Moreover, the cumulative capacity of 15.6 Ah cm−2 at a current density of 40 mA cm−2 highlights the better energy storage capability. This performance is particularly noteworthy for energy storage applications where high capacity and long cycle life are crucial. The H2O bonding capacity of the component in the nanocomposite electrolyte plays a vital role in reducing surface passivation and hydrogen evolution reactions. By forming strong bonds with H2O molecules, the polyethyne helps prevent unwanted reactions that can deteriorate battery performance and efficiency. This mitigates issues typically associated with excess H2O and ion presence in aqueous Co-ion batteries. Furthermore, the high-rate performance with excellent stability and cycling stability performance (>500 cycles at 8 C) of full Co||MnO2 batteries fabricated with this electrolyte further validates its effectiveness in practical battery configurations. These results indicate the potential of the nanocomposite electrolyte as a valuable and sustainable option, simplifying the development of reliable and efficient energy storage systems and renewable energy applications.
A salinity gradient solar pond (SGSP) is a large and deep artificial basin of layered brine, that collects and stores simultaneous solar energy for use in various applications. Experimental and theoretical studies have been launched to understand the thermal behavior of SGSPs, under different operating conditions. This article then traces the history of SGSPs, from their natural discovery to their current artificial applications and the progress of studies and research, according to their chronological sequence, in terms of determining their physical and dynamic aspects, their operation, management, and maintenance. It has extensively covered the theoretical and experimental studies, as well as the direct and laboratory applications of this technology, especially the most famous and influential in this field, classified according to the aspect covered by the study, with a comparison between the different results obtained. In addition, it highlighted the latest methods to improve the performance of an SGSP and facilitate its operation, such as the use of a magnetic field and the adoption of remote data acquisition, with the aim of expanding research and enhancing the benefit of this technology.
Herein, we report a facile preparation of super-hydrophilic sand by coating the sand particles with cross-linked polyacrylamide (PAM) hydrogels for enhanced water absorption and controlled water release aimed at desert agriculture. To prepare the sample, 4 wt% of aqueous PAM solution is mixed with organic cross-linkers of hydroquinone (HQ) and hexamethylenetetramine (HMT) in a 1:1 weight ratio and aqueous potassium chloride (KCl) solution. A specific amount of the above solution is added to the sand, well mixed, and subsequently cured at 150 °C for 8 h. The prepared super-hydrophilic sands were characterized by Fourier-transform infrared spectroscopy (FT-IR) for chemical composition and X-ray diffraction (XRD) for successful polymer coating onto the sand. The water storage for the samples was studied by absorption kinetics at various temperature conditions, and extended water release was studied by water desorption kinetics. The water swelling ratio for the super-hydrophilic sand has reached a maximum of 900% (9 times its weight) at 80 °C within 1 h. The desorption kinetics of the samples showed that the water can be stored for up to a maximum of 3 days. Therefore, super-hydrophilic sand particles were successfully prepared by coating them with PAM hydrogels, which have great potential to be used in sustainable desert agriculture.
Carbon based materials are really an integral component of our lives and widespread research regarding their properties was conducted along this process. The addition of dopants to carbon materials, either during the production process or later on, has been actively investigated by researchers all over the world who are looking into how doping can enhance the performance of materials and how to overcome the current difficulties. This study explores synthesis methods for nitrogen-doped carbon materials, focusing on advancements in adsorption of different pollutants like CO2 from air and organic, inorganic and ions pollutants from water, energy conversion, and storage, offering novel solutions to environmental and energy challenges. It addresses current issues with nitrogen-doped carbon materials, aiming to contribute to sustainable solutions in environmental and energy sciences. Alongside precursor types and synthesis methods, a significant relationship exists between nitrogen content percentage and adsorption capacity in nitrogen-doped activated carbon. Nitrogen content ranges from 0.64% to 11.23%, correlating with adsorption capacities from 0.05 mmol/g to 7.9 mmol/g. Moreover, an electrochemical correlation is observed between nitrogen atom increase and specific capacity in nitrogen-doped activated carbon electrodes. Higher nitrogen percentage corresponds to increased specific capacity and capacity retention. This comprehensive analysis sheds light on the potential of nitrogen-doped carbon materials and highlights their significance in addressing critical environmental and energy challenges.
Copyright © by EnPress Publisher. All rights reserved.