Heat removal has become an increasingly crucial issue for microelectronic chips due to increasingly high speed and high performance. One solution is to increase the thermal conductivity of the corresponding dielectrics. However, traditional approach to adding solid heat conductive nanoparticles to polymer dielectrics led to a significant weight increase. Here we propose a dielectric polymer filled with heat conductive hollow nanoparticles to mitigate the weight gain. Our mesoscale simulation of heat conduction through this dielectric polymer composite microstructure using the phase-field spectral iterative perturbation method demonstrates the simultaneous achievement of enhanced effective thermal conductivity and the low density. It is shown that additional heat conductivity enhancement can be achieved by wrapping the hollow nanoparticles with graphene layers. The underlying mesoscale mechanism of such a microstructure design and the quantitative effect of interfacial thermal resistance will be discussed. This work is expected to stimulate future efforts to develop light-weight thermal conductive polymer nanocomposites.
This article explored mineral resources and their relation to structural settings in the Central Eastern Desert (CED) of Egypt. Integration of remote sensing (RS) with aeromagnetic (AMG) data was conducted to generate a mineral predictive map. Several image transformation and enhancement techniques were performed to Landsat Operational Land Imager (OLI) and Shuttle Radar Topography Mission (SRTM) data. Using band ratios and oriented principal component analysis (PCA) on OLI data allowed delineating hydrothermal alteration zones (HAZs) and highlighted structural discontinuity. Moreover, processing of the AMG using Standard Euler deconvolution and residual magnetic anomalies successfully revealed the subsurface structural features. Zones of hydrothermal alteration and surface/subsurface geologic structural density maps were combined through GIS technique. The results showed a mineral predictive map that ranked from very low to very high probability. Field validation allowed verifying the prepared map and revealed several mineralized sites including talc, talc-schist, gold mines and quartz veins associated with hematite. Overall, integration of RS and AMG data is a powerful technique in revealing areas of potential mineralization involved with hydrothermal processes.
The Cu2–xSe nanoparticles were synthesized by high temperature pyrolysis, modified with aminated polyethylene glycol in aqueous solution and loaded with compound 2,2′–azobis[2–(2–imidazolin–2–yl)propane] dihydrochloride (AIPH). The obtained nanomaterials can induce photothermal effect and use heat to promote the generation of toxic AIPH radicals under the irradiation of near-infrared laser (808 nm), which can effectively kill cancer cells. A series of in vitro experiments can preliminarily prove that Cu2–xSe–AIPH nanomaterials have strong photothermal conversion ability, good biocompatibility and anticancer properties.
An α, α′-dipyridyl adduct of a complex compound hexaaquatribenzene-1,2,4,5-tetracarbonatotetra iron (III) with porous structure was synthesized for the first time. According to the results of elemental, X-ray, IR-spectroscopic and differential-thermal analyses the individuality, chemical formula, thermal destruction, and form of coordination of acidic anion and dipyridyl were established. During interaction of a complex compound with dipyridyl, it completely loses all crystallization molecule of water resulting in a compound with a chemical formula of Fe4(C6H2(COO)4)3(dpy)2(dipyridyl). Using the identification of diffraction pattern the parameters of lattice cell of the complex compound were determined.
Copyright © by EnPress Publisher. All rights reserved.