Fire, a phenomenon occurs in most parts of the world and causes severe financial losses, even, irreparable damages. Many parameters are involved in the occurrence of a fire; some of which are constant over time (at least in a fire cycle), but the others are dynamic and vary over time. Unlike the earthquake, the disturbance of fire depends on a set of physical, chemical, and biological relations. Monitoring the changes to predict the occurrence of fire is efficient in forest management. Method: In this research, the Persian and English databases were structurally searched using the keywords of fire risk modeling, fire risk, fire risk prediction, remote sensing and the reviewed papers that predicted the fire risk in the field of remote sensing and geographic information system were retrieved. Then, the modeling and zoning data of fire risk prediction were extracted and analyzed in a descriptive manner. Accordingly, the study was conducted in 1995-2017. Findings: Fuzzy analytic hierarchy process (AHP) zoning method was more practical among the applied methods and the plant moisture stress measurement was the most efficient among the remote sensing indices. Discussion and Conclusion: The findings indicate that RS and GIS are effective tools in the study of fire risk prediction.
Small watershed ecological compensation is an important economic means to solve the contradiction between protecting the ecological environment and developing the economy. Taking the Changtian small watershed in the Xixiu District of Anshun City as an example, this paper uses the ecological service function value method to roughly calculate the ecological service function value of the small watershed ecosystem: the ecological service function value of the Changtian small watershed is 913.586 million yuan, and the total amount of ecological compensation is 11.6245 million yuan, of which the farmland system compensation is 1.3194 million yuan, the forest system compensation is 7.5336 million yuan, and the water system compensation is 256,000 yuan, The compensation for the fruit forest system is 2,515,500 yuan. Based on the value of ecosystem service function, the compensated and non-compensated ecosystem service functions are distinguished, and the equivalent factors that different ecosystems can provide compensated ecosystem functions are expressed, so that the determination of ecological compensation amount is scientific and more accurate, and then provides a basis for the determination of ecological compensation standard of the small watershed.
Objective: The influence of climate on forest stands cannot be ignored, but most of the previous forest stand growth models were constructed under the presumption of invariant climate and could not estimate the stand growth under climate change. The model was constructed to provide a theoretical basis for forest operators to take reasonable management measures for fir under the influence of climate. Methods: Based on the survey data of 638 cedar plantation plots in Hunan Province, the optimal base model was selected from four biologically significant alternative stand basal area models, and the significant climate factors without serious covariance were selected by multiple stepwise regression analysis. The optimal form of random effects was determined, and then a model with climatic effects was constructed for the cross-sectional growth of fir plantations. Results: Richards formula is the optimal form of the basic model of stand basal area growth. The coefficient of adjustment was 0.8355; the average summer maximum temperature and the water vapor loss in Hargreaves climate affected the maximum and rate of fir stand stand growth respectively, and were negatively correlated with the stand growth. The adjusted coefficient of determination of the fir stand area break model with climate effects was 0.8921, the root mean square error (RMSE) was 3.0792, and the mean relative error absolute value (MARE) was 9.9011; compared with the optimal base model, improved by 6.77%, RMSE decreased by 19.04%, and MARE decreased by 15.95%. Conclusion: The construction of the stand cross-sectional area model with climate effects indicates that climate has a significant influence on stand growth, which supports the rationality of considering climate factors in the growth model, and it is important for the regional stand growth harvest and management of cedar while improving the accuracy and applicability of the model.
Copyright © by EnPress Publisher. All rights reserved.