In this study, we utilized a convolutional neural network (CNN) trained on microscopic images encompassing the SARS-CoV-2 virus, the protozoan parasite “plasmodium falciparum” (causing of malaria in humans), the bacterium “vibrio cholerae” (which produces the cholera disease) and non-infected samples (healthy persons) to effectively classify and predict epidemics. The findings showed promising results in both classification and prediction tasks. We quantitatively compared the obtained results by using CNN with those attained employing the support vector machine. Notably, the accuracy in prediction reached 97.5% when using convolutional neural network algorithms.
This study aimed to determine the socio-economic poverty status of those living in rural areas using data surveys obtained from household expenditure and income. Machine learning-based classification and clustering models were proven to provide an overview of efforts to determine similarities in poverty characteristics. Efforts to address poverty classification and clustering typically involve comprehensive strategies that aim to improve socio-economic conditions in the affected areas. This research focuses on the combined application of machine learning classification and clustering techniques to analyze poverty. It aims to investigate whether the integration of classification and clustering algorithms can enhance the accuracy of poverty analysis by identifying distinct poverty classes or clusters based on multidimensional indicators. The results showed the superiority of machine learning in mapping poverty in rural areas; therefore, it can be adopted in the private sector and government domains. It is important to have access to relevant and reliable data to apply these machine learning techniques effectively. Data sources may include household surveys, census data, administrative records, satellite imagery, and other socioeconomic indicators. Machine learning classification and clustering analyses are used as a decision support tool to gain an understanding of poverty data from each village. These strategies are also used to describe the profile of poverty clusters in the community in terms of significant socio-economic indicators present in the data. Village clusters based on an analysis of existing poverty indicators are grouped into high, moderate, and low poverty levels. Machine learning can be a valuable tool for analyzing and understanding poverty by classifying individuals or households into different poverty categories and identifying patterns and clusters of poverty. These insights can inform targeted interventions, policy decisions, and resource allocation for poverty reduction programs.
This research paper aims to benchmark the characteristics of financial systems for 102 countries worldwide from the period of 2005 to 2017. The financial systems’ database encompasses four main dimensions, each consisting of several variables for every indicator: (a) financial depth, (b) financial efficiency, (c) financial access, and (d) financial stability. The objective is to closely analyse the different factors that contribute to the attractiveness of financial and economic systems globally. Furthermore, this paper employs a literature review and an empirical modelling and classification of financial systems worldwide to assess their attractiveness. The modelling process utilizes two statistical analysis methods: discriminant analysis (PCA) and neural analysis. By doing so, this research paper aims to identify the most appropriate measures to strengthen these systems and economies. The main conclusion of the research is to establish a ranking of the world’s best countries and also the validation of the hypothesis that macroeconomic conditions are the effective determinants of the classification dimensions of financial systems.
This study applies machine learning methods such as Decision Tree (CART) and Random Forest to classify drought intensity based on meteorological data. The goal of the study was to evaluate the effectiveness of these methods for drought classification and their use in water resource management and agriculture. The methodology involved using two machine learning models that analyzed temperature and humidity indicators, as well as wind speed indicators. The models were trained and tested on real meteorological data to assess their accuracy and identify key factors affecting predictions. Results showed that the Random Forest model achieved the highest accuracy of 94.4% when analyzing temperature and humidity indicators, while the Decision Tree (CART) achieved an accuracy of 93.2%. When analyzing wind speed indicators, the models’ accuracies were 91.3% and 93.0%, respectively. Feature importance revealed that atmospheric pressure, temperature at 2 m, and wind speed are key factors influencing drought intensity. One of the study’s limitations was the insufficient amount of data for high drought levels (classes 4 and 5), indicating the need for further data collection. The innovation of this study lies in the integration of various meteorological parameters to build drought classification models, achieving high prediction accuracy. Unlike previous studies, our approach demonstrates that using a wide range of meteorological data can significantly improve drought classification accuracy. Significant findings include the necessity to expand the dataset and integrate additional climatic parameters to improve models and enhance their reliability.
Copyright © by EnPress Publisher. All rights reserved.