Strategically managing production systems is crucial for creating value and enhancing the competitive capabilities of companies. However, research on organizational culture within these systems is scarce, particularly in the Colombian context. This research aims to evaluate cultural profiles and their impact on the performance of production systems in Colombian firms. The regional focus is vital as cultural and contextual factors can vary significantly between regions, influencing organizational behavior and performance outcomes. To achieve this, we make a study in a sample of Colombian companies, with participation from working students of the Universidad Nacional Abierta y a Distancia (UNAD). We used a data analytics approach to collected data. The results will be relevant to both the scientific community and business practitioners. This research seeks to determine whether the perception of the work environment within a company influences the perceived performance of the company. The findings will provide a deeper understanding of the relationship between organizational culture and production system performance, offering a foundation for business decision-making and enhancing competitiveness in Latin American context.
This paper is the third in a series focused on bridging the gap between secondary and higher education. Our primary objective is to develop a robust theoretical framework for an innovative e-business model called the Undergraduate Study Programme Search System (USPSS). This system considers multiple criteria to reduce the likelihood of exam failure or the need for multiple retakes, while maximizing the chances of successful program completion. Testing of the proposed algorithm demonstrated that the Stochastic Gradient Boosted Regression Trees method outperforms the current method used in Lithuania for admitting applicants to 47 educational programs. Specifically, it is more accurate than the Probabilistic Neural Network for 25 programs, the Ensemble of Regression Trees for 24 programs, the Single Regression Tree for 18 programs, the Random Forest Regression for 16 programs, the Bayesian Additive Regression Trees for 13 programs, and the Regression by Discretization for 10 programs.
While the healthcare landscape continues to evolve, rural-based hospitals face unique challenges in providing quality patient care amidst resource constraints and geographical isolation. This study evaluates the impact of big data analytics in rural-based hospitals in relation to service delivery and shaping future policies. Evaluating the impact of big data analytics in rural-based hospitals will assist in discovering the benefits and challenges pertinent to this hospital. The study employs a positivist paradigm to quantitatively analyze collected data from rural-based hospital professionals from the Information Technology (IT) departments. Through a comprehensive evaluation of big data analytics, this study seeks to provide valuable insights into the feasibility, infrastructure, policies, development, benefits and challenges associated with incorporating big data analytics into rural-based hospitals for day-to-day operations. The findings are expected to contribute to the ongoing discourse on healthcare innovation, particularly in rural-based hospitals and inform strategies for optimizing the implementation and use of big data analytics to improve patient care, decision-making, operations and healthcare sustainability in rural-based hospitals.
Copyright © by EnPress Publisher. All rights reserved.