In order to evaluate the temporal changes in tree diversity of forest vegetation in Xishuangbanna, Yunnan Province, the study collected tree diversity data from four main forest vegetation in the region through a quadrat survey including tropical rainforest (TRF), tropical coniferous forest (COF), tropical lower mountain evergreen broad-leaved forest (TEBF), tropical seasonal moist forest (TSMF). We extracted the distribution of four forest vegetation in the region in four periods of 1992, 2000, 2009, and 2016 in combination with remote sensing images, using simp son Shannon Wiener and scaling species diversity indexes compare to the differences of tree evenness of four forest vegetation and use the scaling ecological diversity index and grey correlation evaluation model to evaluate the temporal changes of forest tree diversity in the region in four periods. The results show that: (1) The proportion of forest area has a trend of decreasing first and then increasing, which is shown by the reduction from 65.5% in 1992 to 53.42% in 2000, to 52.49% in 2009, and then to 54.73% in 2016. However, the tropical rainforest shows a continuous decreasing trend. (2) There are obvious differences in the contributions of the four kinds of forest vegetation to tree diversity. The order of evenness is tropical rainforest > tropical mountain (low mountain) evergreen broad-leaved forest > warm coniferous forest > tropical seasonal humid forest, and the order of richness is tropical rainforest > tropical mountain (low mountain) evergreen broad-leaved forest > tropical seasonal humid forest > warm coniferous forest, The order of contribution to tree diversity in tropical rainforest > tropical mountain (low mountain) evergreen broad-leaved forest > tropical seasonal humid forest > warm tropical coniferous forest. (3) The tree diversity of tropical rainforests and tropical seasonal humid forests showed a continuous decreasing trend. The tree diversity of forest vegetation in Xishuangbanna in four periods was 1992 > 2009 > 2016 > 2000. The above results show that economic activities are an important factor affecting the biodivesity of Xishuangbanna, and the protection of tropical rainforest is of great significance to maintain the biodiversity of the region.
A topic of current interest in forestry science concerns the regeneration of degraded forests and areas. Within this topic, an important aspect refers to the time that different forests take to recover their original levels of diversity and other characteristics that are key to resume their functioning as ecosystems. The present work focuses on the premontane rainforests of the central Peruvian rainforest, in the Chanchamayo valley, Junín, between 1,000 and 1,500 masl. A total of 19 Gentry Transects of 2 × 500 m, including all woody plants ≥2.5 cm diameter at breast height were established in areas of mature forests, and forests of different ages after clear-cutting without burning. Five forest ages were considered, 5-10, 20, 30, 40 and ≥50 years. The alpha-diversity and composition of the tree flora under each of these conditions was compared and analyzed. It was observed that, from 40 years of age, Fisher’s alpha-diversity index becomes quite similar to that characterizing mature forests; from 30 years of age, the taxonomic composition by species reached a similarity of 69–73%, like those occurring in mature forests. The characteristic botanical families, genera and species at each of the ages were compared, specifying that as the age of the forest increases, there are fewer shared species with a high number of individuals. Early forests, up to 20 years of age, are characterized by the presence of Piperaceae; after 30 years of age, they are characterized by the Moraceae family.
[Objective] To understand the relationship between species diversity and tree growth in natural secondary forests in Northeast China, to determine the reasonable size of species diversity, and to carry out appropriate nurturing harvesting and artificial replanting, so as to provide a scientific and theoretical basis for secondary forest management and management. [Methods] A total of 123 sample plots were set up in the Xiaoxinganling (XXAL), Zhangguangcailing (ZGCL), Laojialing (LYL), Changbai Mountain (CBS), Hadaling (HDL) and Longgang Mountain (LGS) areas in Northeast China, they were used to investigate the species composition, importance value, diversity and tree growth in each area. [Results] A total of 48 species belonging to 17 families and 31 genera were investigated in all the sample plots, among which the sample plots in Longgang Mountain contained the largest number of families, genera and species, followed by Hada Ling, Changbai Mountain, Laoyaling, Zhangguangcai Mountain and Xiaoxinganling. The α-diversity index of species in the sample sites was the largest in Changbai Mountain and the smallest in Xiaoxinganling, and the difference between them was significant (P < 0.05), while the richness index was the largest in Longgang Mountain and the smallest in Xiaoxinganling. The difference between them was significant (P < 0.05), while the greater the difference in latitude between the regions, the more obvious the difference in β-diversity index of species in the sample sites, and the fewer species shared between the two regions. The higher the rate of community succession, the higher the average diameter at breast height and the average tree height in each region were CBS > LYL > LGS > ZGCL > HDL > XXAL. The largest breast tree species in each region was Mongolian oak in Changbai Mountain with a diameter at breast height of 64.8 cm, and the smallest breast tree species in each region was Tyrannus sylvestris in Longgang Mountain with a diameter at breast height of 4.0 cm. The highest tree species in each region was Liriodendron sylvestris in Longgang Mountain with a height of 28.9 m, and the smallest species is yellow pineapple with a height of 1.3 m in Longgang Mountain. [Conclusion] Within a certain range, species diversity has a facilitating effect on the average diameter at breast height and average tree height of species within a stand. Therefore, during the management of secondary forests, appropriate nurturing harvesting and artificial replanting should be adopted to ensure reasonable species diversity in the stands and provide optimal space for the growth of natural secondary forests.
In order to scientifically evaluate the germplasm resources of Momordica charantia in southern China, the diversity, correlation and cluster analysis were carried out on the main botanical characters of 56 Momordica charantia varieties, such as melon length, melon transverse diameter, single melon weight, internode length, stem diameter, leaf length and leaf width. The results showed that the variation coefficients of 7 agronomic characters of 56 Momordica charantia varieties ranged from 8.81% to 19.44%, the average variation coefficient was 14.21%, the maximum variation coefficient of single melon weight was 19.44%, and the minimum variation coefficient of melon cross diameter was 8.81%. The correlation analysis showed that there were correlations among the agronomic traits. The positive correlation coefficient between leaf length and leaf width was up to 0.978, and the negative correlation coefficient between single melon weight and internode length was up to 0.451. The 56 varieties were divided into 3 groups by cluster analysis, of which 92.86% of the materials were concentrated in the first and second groups, and there were only 4 materials in the third group. The results can provide a reference for the cultivation, utilization and genetic improvement of Momordica charantia resources in southern China.
The characteristics of agricultural products are influenced by the ecosystem, from the perspective of biotic and abiotic factors, which produce in the plant physiological responses and in turn in the fruit unique physicochemical properties, which are the basis for designations of origin and strategies to add value to the product in the current market. In the present work, ten cocoa materials (Theobroma cacao L.) were selected for their outstanding productivity (FSV41, FLE3, FEAR5, FSA12, FEC2, SCC23, SCC80, SCC55, ICS95 and CCN51), which were established in the departments of Santander (931 m a.s.l.), Huila (931 m a.s.l.), Huila (931 m a.s.l.), Huila (931 m a.s.l.), Huila (931 m a.s.l.), Huila (931 m a.s.l.) and Huila (931 m a.s.l.). These were established in the departments of Santander (931 m a.s.l.), Huila (885 m a.s.l.) and Arauca (204 m a.s.l.), the main cocoa-producing areas in Colombia. For the evaluation of the physical characteristics of the collected materials, 21 quantitative descriptors were used to determine the physical variability of the fruit according to clone and place of collection. The data collected were analyzed by means of Pearson’s correlation matrix and principal component analysis, it was possible to identify those descriptors that contribute most to the variability among materials (ear index, diameter length ratio, seed weight and diameter, and fruit weight and length). In addition, it was possible to verify the effect of the place of harvest on the physical characteristics of the materials, high-lighting the importance of the adaptation study prior to the planting of the cocoa material, with the objective of guaranteeing a premium, productive and quality cocoa crop for the industry, which is competitive in the market.
With the purpose of knowing the phytosocilogy of weeds associated to a carrot crop (Daucus carota L.) under conditions of the municipalities of Ventaquemada and Jenesano-Boyacá, one lot per municipality destined to carrot cultivation was selected and a W-shaped layout was made covering an area of 500 m2. Relative density, relative frequency, relative dominance and the importance value index (IVI) were calculated, as well as the Alpha and Beta diversity indices for the sampled areas. A total of 6 families and 11 species were counted, of which 63.64% were represented by annual plants and 36.36% by perennial plants. The class Liliopsida (Monocotyledon) was represented by the Poaceae family. The Magnoliopsida class (Dicotyledon) was represented by the following families: Asteraceae, Brassicaceae, Boraginaceae, Leguminosaceae, Polygonaceae, the last one being the one with the highest number of species. The species R. crispus and P. nepalense were the ones with the highest values of Importance Value Index (IVI) with 0.953 and 0.959, respectively. According to the Shannon-Wiener diversity and Simpson’s dominance indices, the evaluated areas presented a low species diversity and a high probability of dominant species. The results obtained can serve as a basis and tool for carrot growers in the evaluated areas to define management plans for the associated weeds and thus optimize yields in this crop.
Copyright © by EnPress Publisher. All rights reserved.