Accurate demand forecasting is key for companies to optimize inventory management and satisfy customer demand efficiently. This paper aims to Investigate on the application of generative AI models in demand forecasting. Two models were used: Long Short-Term Memory (LSTM) networks and Variational Autoencoder (VAE), and results were compared to select the optimal model in terms of performance and forecasting accuracy. The difference of actual and predicted demand values also ascertain LSTM’s ability to identify latent features and basic trends in the data. Further, some of the research works were focused on computational efficiency and scalability of the proposed methods for providing the guidelines to the companies for the implementation of the complicated techniques in demand forecasting. Based on these results, LSTM networks have a promising application in enhancing the demand forecasting and consequently helpful for the decision-making process regarding inventory control and other resource allocation.
This study aims to identify the risk factors causing the delay in the completion schedule and to determine an optimization strategy for more accurate completion schedule prediction. A validated questionnaire has been used to calculate a risk rating using the analytical hierarchy process (AHP) method, and a Monte Carlo simulation on @RISK 8.2 software was employed to obtain a more accurate prediction of project completion schedules. The study revealed that the dominant risk factors causing project delays are coordination with stakeholders and changes in the scope of work/design review. In addition, the project completion date was determined with a confidence level of 95%. All data used in this study were obtained directly from the case study of the Double-Double Track Development Project (Package A). The key result of this study is the optimization of a risk-based schedule forecast with a 95% confidence level, applicable directly to the scheduling of the Double-Double Track Development Project (Package A). This paper demonstrates the application of Monte Carlo Simulation using @RISK 8.2 software as a project management tool for predicting risk-based-project completion schedules.
The Consumer Price Index (CPI) is a vital gauge of economic performance, reflecting fluctuations in the costs of goods, services, and other commodities essential to consumers. It is a cornerstone measure used to evaluate inflationary trends within an economy. In Saudi Arabia, forecasting the Consumer Price Index (CPI) relies on analyzing CPI data from 2013 to 2020, structured as an annual time series. Through rigorous analysis, the SARMA (0,1,0) (12,0,12) model emerges as the most suitable approach for estimating this dataset. Notably, this model stands out for its ability to accurately capture seasonal variations and autocorrelation patterns inherent in the CPI data. An advantageous feature of the chosen SARMA model is its self-sufficiency, eliminating the need for supplementary models to address outliers or disruptions in the data. Moreover, the residuals produced by the model adhere closely to the fundamental assumptions of least squares principles, underscoring the precision of the estimation process. The fitted SARMA model demonstrates stability, exhibiting minimal deviations from expected trends. This stability enhances its utility in estimating the average prices of goods and services, thus providing valuable insights for policymakers and stakeholders. Utilizing the SARMA (0,1,0) (12,0,12) model enables the projection of future values of the Consumer Price Index (CPI) in Saudi Arabia for the period from June 2020 to June 2021. The model forecasts a consistent upward trajectory in monthly CPI values, reflecting ongoing economic inflationary pressures. In summary, the findings underscore the efficacy of the SARMA model in predicting CPI trends in Saudi Arabia. This model is a valuable tool for policymakers, enabling informed decision-making in response to evolving economic dynamics and facilitating effective policies to address inflationary challenges.
Delay is the leading challenge in completing Engineering, Procurement, and Construction (EPC) projects. Delay can cause excess costs, which reduces company profits. The relationship between subcontractors and the main contractor is a critical factor that can support the success of an EPC project. The problematic financial condition of the main contractor can cause delay in payments to subcontractors. This research will set a model that combines the system dynamics and earned value method to describe the impact of subcontractor advance payments on project performance. The system dynamics method is used to model and analyze the impact of interactions between variables affecting project performance, while the earned value method is applied to quantitatively evaluate project performance and forecast schedule and cost outcomes. These two methods are used complementarily to achieve a holistic understanding of project dynamics and to optimize decision-making. The designed model selects the optimum scenario for project time and costs. The developed model comprises project performance, costs, cash flow, and performance forecasting sub-models. The novelty in this research is a new model for optimizing project implementation time and costs, adding payment rate variables to subcontractors and subcontractor performance rates. The designed model can provide additional information to assist project managers in making decisions.
Background: According to the 2023 World Economic Forum report, the impact of Artificial Intelligence (AI) and automation on the job market was more significant than originally projected. Although 2018 research forecasted significant job losses balanced by job creation, current data indicates otherwise. Between 2023 and 2027, it is anticipated that 69 million new jobs will be created due to advancements in AI, however, this will be offset by the loss of 83 million jobs, leading to a net decrease of 14 million jobs worldwide. Roles related to AI, digitalization, and sustainability, such as AI specialists and renewable energy engineers are expected to grow, while those in clerical and administrative sectors are most at risk of decline. This shift underscores the need for reskilling and adapting to evolving fields, as nearly 44% of workers skills will face disruption by 2027. The demand for analytical thinking, technological literacy, and adaptability will grow as companies increasingly adopt frontier technologies. Objectives: (1) identify key variables influencing adaptability of college graduates in Indonesia, (2) quantify the strength of relationships between these variables to understand the combined effect on graduate adaptability. The research also aims to (3) develop theoretical and practical recommendations to strengthen ICIL policy and equip students with the relevant skills needed to thrive in an ever-changing job market. Methodology: The research focuses on predicting future employment trends, adaptability, and learning agility (LA), along with the implications for improving the Independent Campus Independent Learning (ICIL) policy. It focused on the significant unemployment rate among college graduates, along with the lack of research on the relationship between job change predictions, graduates’ adaptability, and the impact on graduates’ general well-being. The mixed-method strategy with quantitative analysis was used to conduct this research with data collected from 284 ICIL participants through online survey. The gathered data was evaluated using Structural Equation Modeling (SEM) with Lisrel version 10. Results: The result showed that job trend projections significantly influence responsiveness, which demonstrated a robust association between employment trend predictions and LA. Responsiveness significantly influenced learning agility which indicated no significant direct association between job trend projections and graduate adaptability. Conclusion: The research emphasized the need to consider adaptability as a concept with multiple dimensions. It proposed incorporating these factors into strategies for education and human resources development in order to better equip graduates for the demands of a constantly changing work market. Unique contribution: This research focused on adaptability as a multifaceted concept that consist of the ability to forecast job trends, be sensitive, and possess LA. It offered a deeper understanding of the relationships between these variables as discussed in the human resources literature. Technology, corporate culture, and training played a critical role in connecting employment trend prediction with the ability to respond effectively. Key recommendation: Institutions should implement a comprehensive approach to the development of human resources, with emphasis on fostering critical thinking, analytical abilities, and the practical application of information. By employing these tactics, higher education institutions may effectively equip graduates with both academic proficiency and the ability to adapt and thrive in quickly changing organizational environments, leading to the production of robust and versatile workers.
Copyright © by EnPress Publisher. All rights reserved.