Since 2022, global geopolitical conflicts have intensified, and there has been a notable increase in the international community’s demand for currency diversification. This has created a new opportunity for the internationalization of the Renminbi (RMB). This paper examines the factors influencing the internationalization of the RMB, with a particular focus on its role as a unit of account, medium of exchange and store of value. These functions are considered in conjunction with the digital technological innovation represented by e-CNY. The methodology employed is based on the vector autoregression (VAR) model, Granger causality test and variance decomposition analysis. The Granger causality test indicates that digital technology innovation is not the primary driver of RMB internationalization at this juncture. The impulse response analysis and variance decomposition analysis revealed that the impact and direction of influence exerted by the various factors on RMB internationalization exhibit considerable discrepancies.
This study introduces a novel Groundwater Flooding Risk Assessment (GFRA) model to evaluate risks associated with groundwater flooding (GF), a globally significant hazard often overshadowed by surface water flooding. GFRA utilizes a conditional probability function considering critical factors, including topography, ground slope, and land use-recharge to generate a risk assessment map. Additionally, the study evaluates the return period of GF events (GFRP) by fitting annual maxima of groundwater levels to probability distribution functions (PDFs). Approximately 57% of the pilot area falls within high and critical GF risk categories, encompassing residential and recreational areas. Urban sectors in the north and east, containing private buildings, public centers, and industrial structures, exhibit high risk, while developing areas and agricultural lands show low to moderate risk. This serves as an early warning for urban development policies. The Generalized Extreme Value (GEV) distribution effectively captures groundwater level fluctuations. According to the GFRP model, about 21% of the area, predominantly in the city’s northeast, has over 50% probability of GF exceedance (1 to 2-year return period). Urban outskirts show higher return values (> 10 years). The model’s predictions align with recorded flood events (90% correspondence). This approach offers valuable insights into GF threats for vulnerable locations and aids proactive planning and management to enhance urban resilience and sustainability.
Copyright © by EnPress Publisher. All rights reserved.