This paper presents a brief review of risk studies in Geography since the beginning of the 20th century, from approaches focused on physical-natural components or social aspects, to perspectives that incorporate a systemic approach seeking to understand and explain risk issues at a spatial level. The systemic approach considers principles of interaction between multiple variables and a dynamic organization of processes, as part of a new formulation of the scientific vision of the world. From this perspective, the Complex Systems Theory (CST) is presented as the appropriate conceptual-analytical framework for risk studies in Geography. Finally, the analysis and geographic information integration capabilities of Geographic Information Systems (GIS) based on spatial analysis are explained, which position it as a fundamental conceptual and methodological tool in risk analysis from a systemic approach.
Transportation projects are crucial for the overall success of major urban, metropolitan, regional, and national development according to their capacity by bringing significant changes in socio-economic and territorial aspects. In this context, sustaining and developing economic and social activities depend on having sufficient Water Resources Management. This research helps to manage transport project planning and construction phases to analyze the surface water flow, high-level streams, and wetland sites for the development of transportation infrastructure planning, implementation, maintenance, monitoring, and long-term evaluations to better face the challenges and solutions associated with effective management and enhancement to deal with Low, Medium, High levels of impact. A case study was carried out using the Arc Hydro extension within ArcGIS for processing and presenting the spatially referenced Stream Model. Geographical information systems have the potential to improve water resource planning and management. The study framework would be useful for solving water resource problems by enabling decision makers to collect qualitative data more effectively and gather it into the water management process through a systematic framework.
The benefits of information system users are an important topic in research on information system implementation in general as well as in hospital information systems in particular. The study is applying structural equation modelling in determining the factors affecting personal benefits of information system users, with the antecedents being the combination of perspectives, and the outcomes including individual user results of the system in hospitals. The study was conducted in two phases: a preliminary study and a formal study. The preliminary study aimed to adjust and supplement the observed variables to be suitable for the actual conditions in Vietnam by conducting a preliminary survey with a questionnaire involving 55 samples to assess the internal consistency reliability, convergent validity, and discriminant validity of the measurement scales. The formal quantitative study, which employed linear structural analysis with PLS-SEM, was conducted on 215 samples of individuals who had previously used information systems in several hospitals in Vietnam. The proposed model explained 80.6% of the variance in user engagement with the system and 50.6% of the variance in user satisfaction when using the information system. In more detail, for user benefits, it is worth noting that the strongest impact intensity belongs to information quality and the weakest belongs to support structure. In addition, confidence in one’s own abilities also has a high impact on user benefits when using the information system.
The rapid advancement of information and communication technology has greatly facilitated access to information across various sectors, including healthcare services. This digital transformation demands enhanced knowledge and skills among healthcare providers, particularly in comprehensive midwifery care. However, midwives in rural areas face numerous challenges such as limited resources, cultural factors, knowledge disparities, geographic conditions, and technological adoption. This research aims to evaluate the impact of AI utilization on midwives’ knowledge and behavior to optimize the implementation of healthcare services in accordance with Delima Midwife Service standards in rural settings. The analysis encompasses competencies, characteristics, information systems, learning processes, and health examinations conducted by midwives in adopting AI. The research methodology employs a cross-sectional approach involving 413 rural midwives selected proportionally. Results from Partial Least Squares Structural Equation Modeling indicate that all reflective evaluation variables meet the required criteria. Fornell-Larcker criterion demonstrates that the square root of AVE is greater than other variables. The primary findings reveal that information systems (0.029) and midwives’ competencies (0.033) significantly influence AI utilization. Furthermore, midwives’ competencies (0.002), characteristics (0.031), and AI utilization (0.011) also significantly impact midwives’ knowledge and behavior. Midwives’ characteristics also significantly affect their competencies (0.000), while midwives’ learning influences health examinations (0.000). Midwives’ knowledge and behavior affect the transformation of healthcare services in rural midwifery (0.022). The model fit results in a value of 0.097, empirically supporting the explanation of relationships among variables in the model and meeting the established linearity test.
Today’s automation of the audit process increasingly relies on electronic auditing, especially computer-assisted audit techniques (CAATs), and has become a global necessity. Therefore, this study aims to explore the influence of technological, organizational, and environmental (TOE) factors on audit firms’ adoption of CAATs in developing countries, focusing on Ethiopia. The research employed a quantitative approach and gathered 113 valid responses from certified external auditors in Ethiopian audit firms. The data was then analyzed through the Partial Least Squares Structural Equation Modeling (PLS-SEM) method. The findings show that relative advantage and compatibility are the significant technological attributes influencing CAAT adoption in Ethiopian audit firms. Besides, auditors’ information technology (IT) competency was a significant organizational attribute influencing CAAT adoption. Environmental attributes such as the complexity of the client’s accounting information system (AIS) and the professional body support significantly impact the adoption of CAATs. Additionally, the size of an audit firm reduces the impact of clients’ AIS complexity on the adoption of CAATs in Ethiopian audit firms. The findings underscore the significance of CAAT adoption in audit firms and offer valuable insights for policymakers and standard setters in crafting legislation for the Ethiopian audit industry. This study represents the first scholarly effort to provide evidence of CAAT adoption in audit firms in developing countries like Ethiopia.
The design of effective flood risk mitigation strategies and their subsequent implementation is crucial for sustainable development in mountain areas. The assessment of the dynamic evolution of flood risk is the pillar of any subsequent planning process that is targeted at a reduction of the expected adverse consequences of the hazard impact. This study focuses on riverbed cities, aiming to analyze flood occurrences and their influencing factors. Through an extensive literature review, five key criteria commonly associated with flood events were identified: slope height, distance from rivers, topographic index, and runoff height. Utilizing the network analysis process within Super Decision software, these factors were weighted, and a final flood risk map was generated using the simple weighted sum method. 75% of the data was used for training, and 25% of it was used for testing. Additionally, vegetation changes were assessed using Landsat imagery from 2000 and 2022 and the normalized difference vegetation index (NDVI). The focus of this research is Qirokarzin city as a case study of riverbed cities, situated in Fars province, with Qir city serving as its central hub. Key rivers in Qirokarzin city include the Qara Aghaj River, traversing the plain from north to south; the primary Mubarak Abad River, originating from the east; and the Dutulghaz River, which enters the eastern part of the plain from the southwest of Qir, contributing to plain nourishment during flood events. The innovation of this paper is that along with the objective to produce a reliable delineation of hazard zones, a functional distinction between the loading and the response system (LS and RS, respectively) is made. Results indicate the topographic index as the most influential criterion, delineating Qirokarzin city into five flood risk zones: very low, low, moderate, high, and very high. Notably, a substantial portion of Qirokarzin city (1849.8 square kilometers, 8.54% of the area) falls within high- to very-high flood risk zones. Weighting analysis reveals that the topographic humidity index and runoff height are the most influential criteria, with weights of 0.27 and 0.229, respectively. Conversely, the height criterion carries the least weight at 0.122. Notably, 46.7% of the study area exhibits high flood intensity, potentially attributed to variations in elevation and runoff height. Flood potential findings show that the middle class covers 32.3%, indicating moderate flood risk due to changes in elevation and runoff height. The low-level risk is observed sporadically from the east to the west of the study area, comprising 12.4%. Analysis of vegetation changes revealed a significant decline in forest and pasture cover despite agricultural and horticultural development, exacerbating flood susceptibility.
Copyright © by EnPress Publisher. All rights reserved.