Atom transfer radical polymerization (ATRP) is a kind of controllable reactive radical polymerization method with potential application value. The modification of graphene oxide (GO) by ATRP reaction can effectively control various graft polymer molecules Chain length and graft density, giving GO different functionality, such as good solvent dispersibility, environmental sensitive stimulus responsiveness, biocompatibility, and the like. In this paper, ATRP reaction and GO surface non-covalent bonding ATRP polymer molecular chain were directly initiated from GO surface immobilization initiator. The ATRP reaction modified GO was reviewed, and the process conditions and research methods of ATRP modification reaction were summarized, as well as pointed out the functional characteristics and application prospect of GO functionalized composites.
The use of plant viruses as bioherbicides represents a fascinating and promising frontier in modern agriculture and weed management. This review article delves into the multifaceted world of harnessing plant viruses for herbicidal purposes, shedding light on their potential as eco-friendly, sustainable alternatives to traditional chemical herbicides. We begin by exploring the diverse mechanisms through which plant viruses can target and control weeds, from altering gene expression to disrupting essential physiological processes. The article highlights the advantages of utilizing plant viruses, such as their specificity for weed species, minimal impact on non-target plants, and a reduced environmental footprint. Furthermore, we investigate the remarkable versatility of plant viruses, showcasing their adaptability to various weed species and agricultural environments. The review delves into the latest advancements in genetic modification techniques, which enable the engineering of plant viruses for enhanced herbicidal properties and safety. In addition to their efficacy, we discuss the economic and ecological advantages of using plant viruses as bioherbicides, emphasizing their potential to reduce chemical herbicide usage and decrease the development of herbicide-resistant weeds. We also address the regulatory and safety considerations associated with the application of plant viruses in agriculture. Ultimately, this review article underscores the immense potential of plant viruses as bioherbicides and calls for further research, development, and responsible deployment to harness these microscopic agents in the ongoing quest for sustainable and environmentally friendly weed management strategies.
Copyright © by EnPress Publisher. All rights reserved.