The US Infrastructure Investment and Job Act (IIJA), also commonly referred to as the Bipartisan Infrastructure Bill, passed in 2021, has drawn international attention. It aims to help to rebuild US infrastructure, including transportation networks, broadband, water, power and energy, environmental protection and public works projects. An estimated $1.2 trillion in total funding over ten years will be allocated. The Bipartisan Infrastructure Bill is the largest funding bill for US infrastructure in the recent history of the United States. This review article will specifically discuss funding allocations for roads and bridges, power and grids, broadband, water infrastructure, airports, environmental protection, ports, Western water infrastructure, electric vehicle charging stations and electric school buses in the new spending of the Infrastructure Investment and Job Act and why these investments are urgently necessary. This article will also briefly discuss the views of think tank experts, the public policy perspectives, the impact on domestic and global arenas of the new spending in the IIJA, and the public policy implications.
A failsafe network design recovering from the stressed condition against a massive supply disruption is generally useful for various applications. Water flow in plants under a tension is inherently vulnerable to an embolism, a water supply cut off, causing a death. However, the function of the network structures of leaf veins and xylem stems effectively reduces the embolism-induced failure. In this study, water transport in plants under the pressurized conditions compared to the normal physiological conditions is observed by X-ray imaing. By examining embolism-induced water supply limits in the architecturally diverse leaf and stem networks, a progressive hydraulic rule has been found: the limited flows in the selected parts of the network structures against a total fail. For a scientific explanation on nanoscale water flow dynamics occurring in plants, temporal meniscus development in the nanomembrane model system is investigated. The pressure-driven hydrodynamic transport phenomena can be explained to follow network dynamics of the modified imbibition typically occuring in nanostrutcures. This study contributes to a variety of design technologies of networked materials against the spread of flow damages under the stressed conditions.
Abrupt changes in environmental temperature, wind and humidity can lead to great threats to human life safety. The Gansu marathon disaster of China highlights the importance of early warning of hypothermia from extremely low apparent temperature (AT). Here a deep convolutional neural network model together with a statistical downscaling framework is developed to forecast environmental factors for 1 to 12 h in advance to evaluate the effectiveness of deep learning for AT prediction at 1 km resolution. The experiments use data for temperature, wind speed and relative humidity in ERA-5 and the results show that the developed deep learning model can predict the upcoming extreme low temperature AT event in the Gansu marathon region several hours in advance with better accuracy than climatological and persistence forecasting methods. The hypothermia time estimated by the deep learning method with a heat loss model agrees well with the observed estimation at 3-hour lead. Therefore, the developed deep learning forecasting method is effective for short-term AT prediction and hypothermia warnings at local areas.
The public health emergency has changed the environment and conditions of art teaching. Based on the abnormal teaching background, we can use this as an opportunity to explore new teaching forms. Relying on the unique functions of the network platform, the Art Cloud Classroom explores a new style of home-based art learning that is vivid, autonomous and interactive, develops students' art skills, develops positive interests and emotions, and makes every life a better place in the nourishment of art.
Under the background of the development of the network information age, the current Internet industry has obtained more development opportunities, but it has also brought corresponding challenges in the process of wide application. In the development and construction of modernization, society pays more attention to the supervision and determination of the characteristics of online public opinion. From the perspective of the current characteristics of network public opinion, because social information is more extensive and involves many fields, network public opinion has a high degree of complexity and diffusion. Therefore, it is necessary to strengthen the analysis and application of relevant data mining systems in order to achieve efficient management of network public opinion. The key to the disadvantage of the traditional excavation of public opinion communication characteristics lies in the lag of the excavation process, and it is difficult to deal with malignant public opinion in a timely and effective manner. Therefore, in order to truly solve the lagging problem of public opinion data dissemination feature mining technology, it is necessary to strengthen the application of artificial intelligence technology in it.
To gain a deep understanding of maintenance and repair planning, investigate the weak points of the distribution network, and discover unusual events, it is necessary to trace the shutdowns that occurred in the network. Many incidents happened due to the failure of thermal equipment in schools. On the other hand, the most important task of electricity distribution companies is to provide reliable and stable electricity, which minimal blackouts and standard voltage should accompany. This research uses seasonal time series and artificial neural network approaches to provide models to predict the failure rate of one of the equipment used in two areas covered by the greater Tehran electricity distribution company. These data were extracted weekly from April 2019 to March 2021 from the ENOX incident registration software. For this purpose, after pre-processing the data, the appropriate final model was presented with the help of Minitab and MATLAB software. Also, average air temperature, rainfall, and wind speed were selected as input variables for the neural network. The mean square error has been used to evaluate the proposed models’ error rate. The results show that the time series models performed better than the multi-layer perceptron neural network in predicting the failure rate of the target equipment and can be used to predict future periods.
Copyright © by EnPress Publisher. All rights reserved.