Endosulfan (6,7,8,9,10,10-Hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepine-3-oxide) is an off-patent insecticide used in agricultural farms. Its usage as a pesticide has become highly controversial over the last few decades. This is due to its reported hazardous nature to health and side effects like growth retardation, hydrocephalus, and undesired changes in the male and female hormones leading to complications in sexual maturity. Endosulfan is the main culprit among all pesticide poisoning incidents around the world. Though the usage of this dreaded pesticide is banned by most countries, the high stability of this molecule to withstand degradation for a long period poses a threat to mankind even today. So, it has become highly essential to detect the presence of this poisonous pesticide in the drinking water and milk around these places. It is also advisable to check the presence of this toxic material in the blood of the population living in and around these places so that an early and appropriate management strategy can be adopted. With this aim, we have developed a sensor for endosulfan that displayed high selectivity and sensitivity among all other common analytes in water and biological samples, with a wide linear concentration range (2 fM to 2 mM), a low detection limit (2 fM), and rapid response. A citrate-functionalized cadmium-selenium quantum dot was used for this purpose, which showed a concentration-dependent fluorescence enhancement, enabling easy and sensitive sensing. This sensor was utilized to detect endosulfan in different sources of water, human blood serum, and milk samples with good recoveries. It is also noted that the quantum dot forms a stable complex with endosulfan and is easy to separate from the contaminated source, paving the way for purifying the contaminated water. More detailed tests and validation of the sensor are needed to confirm these observations.
This study analyzes the dynamic relationships between tourism, gross domestic product (GDP) per capita, exports, imports, and carbon dioxide (CO2) emissions in five South Asian countries. A VAR-based Granger causality test is performed with time series data from Bangladesh, India, Nepal, Pakistan, and Sri Lanka. According to the results, both bidirectional and unidirectional relationships among tourism, economic growth, and carbon emissions are investigated. Specifically, tourism significantly impacts GDP per capita in Pakistan, Sri Lanka, and Nepal, yet it has no effect in Bangladesh or India. However, the GDP per capita shows a unidirectional relationship with tourism in Bangladesh and India. The unidirectional causal relationship from exports and imports to tourism in the context of India and a bidirectional relationship in the case of Nepal. In Pakistan, it is observed that exports have a one-way influence on tourism. The result of the panel Granger test shows a significant causal association between tourism, economic growth, and trade (import and export) in five South Asian economies. Particularly, there is a bidirectional causal relationship between GDP per capita and tourism, and a significant unidirectional causal relationship from CO2 emissions, exports, and imports to tourism is explored. The findings of this study are helpful for tourism stakeholders and policymakers in the region to formulate more sustainable and effective tourism strategies.
Air pollution in Jakarta has become a severe concern in the last four months. IQAir, in August 2023, revealed that the level of air pollution had reached 161 points on the Air Pollution Standard Index (APSI). The negative impact on society has placed air pollution as a concern for environmental safety and survival in danger. This condition will encourage the development of a national policy agenda to integrate environmental welfare through various energy efficiency channels. This research analyzes the relationship between air pollutant elements that can reduce air quality. The analysis includes pollutant intensity measured by APSI per unit of pollutant as a measure of efficiency. The aim is to observe energy use, which causes an increase in pollutant levels. This research utilizes dynamic system modeling to produce relationships between parameters to produce factors that cause pollution. The parameters used are motorized vehicles, waste burning in landfills, industry, and power plants. The results of historical behavioral tests and statistical suitability tests show that the behavior is suitable for the short and long term. The simulation results show that the pollution level will worsen by the end of 2027, a hazardous condition for society. The optimistic scenario simulation model proposes immediate counter-measures to reduce pollution to 45.01, the ideal condition. To accelerate improvements in air quality, the Government can plan policies to reduce the use of coal by power plants and industry, as well as the use of electric motorized vehicles, resulting in an ideal reduction in pollution by 2024. In conclusion, pollution can be reduced effectively if the Government firmly implements policies to maintain that air quality remains stable below 50 points.
The following paper assesses the relationship between electricity consumption, economic growth, environmental pollution, and Information and Communications Technology (ICT) development in Kazakhstan. Using the structural equation method, the study analyzes panel data gathered across various regions of Kazakhstan between 2014 and 2022. The data were sourced from official records of the Bureau of National Statistics of Kazakhstan and include all regions of Kazakhstan. The chosen timeframe includes the period from 2014, which marked a significant drop in oil prices that impacted the overall economic situation in the country, to 2022. The main hypotheses of the study relate to the impact of electricity consumption on economic growth, ICT, and environmental sustainability, as well as ICT’s role in economic development and environmental impact. The results show electricity consumption’s positive effect on economic growth and ICT development while also revealing an increase in pollutant emissions (emissions of liquid and gaseous pollutants) with economic growth and electricity consumption. The development of ICT in Kazakhstan has been revealed to not have a direct effect on reducing pollutant emissions into the environment, raising important questions about how technology can be leveraged to mitigate environmental impact, whether current technological advancements are sufficient to address environmental challenges, and what specific measures are needed to enhance the environmental benefits of ICT. There is a clear necessity to integrate sustainable practices and technologies to achieve balanced development. These results offer important insights into the relationships among electricity consumption, technology, economic development, and environmental issues. They underscore the complexity and multidimensionality of these interactions and suggest directions for future research, especially in the context of finding sustainable solutions for balanced development.
Noise pollution in construction sites is a significant concern, impacting worker health, safety, communication, and productivity. The current study aims to assess the paramount consequences of ambient noise pollution on construction activities and workers’ productivity in Peshawar, Pakistan. Noise measurements have been recorded at four different construction sites in Peshawar at different times of the day. Statistical analysis and Relative Importance Index (RII) are employed to evaluate the data Risk variables, such as equipment maintenance, noise control, increased workload, material handling challenges, quality control issues, and client satisfaction. The results indicated that noise levels often exceeded permissible limits, particularly in the afternoon, posing significant worker risks. In addition, RII analysis identified communication difficulties, safety hazards, and decreased productivity as significant issues. The results show that noise pollution is directly linked with safety risks, decreased performance, and client dissatisfaction and needs immediate attention by authorities. This paper proposes a strategic policy framework, recommending uniform hand signals and visual communication methods without noise for workers, worker training about safety, and using wearable devices in noisy settings. Communication training for teams and crane operators, proactive quality control, and customer-oriented project schedules are also proposed. These recommendations aim to mitigate the adverse effects of noise pollution, enhance construction industry resilience, and improve overall operational efficiency, worker safety, and client satisfaction in the construction sector of Peshawar, aligning with policy and sustainable development objectives.
Copyright © by EnPress Publisher. All rights reserved.