This study provides an evaluation of the environmental impact and economic benefits associated with the disposal of mango waste in Thailand, utilizing the methodologies of life cycle assessment (LCA) and cost-benefit analysis (CBA) in accordance with internationally recognized standards such as ISO 14046 and ISO 14067. The study aimed to assess the environmental impact of mango production in Thailand, with a specific focus on its contribution to global warming. This was achieved through the application of a life cycle assessment methodology, which enabled the determination of the cradle-to-grave environmental impact, including the estimation of the mango production’s global warming potential (GWP). Based on the findings of the feasibility analysis, mango production is identified as a novel opportunity for mango farmers and environmentally conscious consumers. This is due to the fact that the production of mangoes of the highest quality is associated with a carbon footprint and other environmental considerations. Based on the life cycle assessment conducted on conventional mangoes, taking into account greenhouse gas (GHG) emissions, it has been determined that the disposal of 1 kg of mango waste per 1 rai through landfilling results in an annual emission of 8.669 tons of carbon. This conclusion is based on comprehensive data collected throughout the entire life cycle of the mangoes. Based on the available data, it can be observed that the quantity of gas released through the landfilling process of mango waste exhibits an annual increase in the absence of any intervening measures. The cost benefit analysis conducted on the life cycle assessment (LCA) of traditional mango waste has demonstrated that the potential benefits derived from its utilization are numerous. The utilization of the life cycle assessment (LCA) methodology and the adoption of a sustainable business model exemplify the potential for developing novel eco-sustainable products derived from mango waste in forthcoming time.
Air pollution in Jakarta has become a severe concern in the last four months. IQAir, in August 2023, revealed that the level of air pollution had reached 161 points on the Air Pollution Standard Index (APSI). The negative impact on society has placed air pollution as a concern for environmental safety and survival in danger. This condition will encourage the development of a national policy agenda to integrate environmental welfare through various energy efficiency channels. This research analyzes the relationship between air pollutant elements that can reduce air quality. The analysis includes pollutant intensity measured by APSI per unit of pollutant as a measure of efficiency. The aim is to observe energy use, which causes an increase in pollutant levels. This research utilizes dynamic system modeling to produce relationships between parameters to produce factors that cause pollution. The parameters used are motorized vehicles, waste burning in landfills, industry, and power plants. The results of historical behavioral tests and statistical suitability tests show that the behavior is suitable for the short and long term. The simulation results show that the pollution level will worsen by the end of 2027, a hazardous condition for society. The optimistic scenario simulation model proposes immediate counter-measures to reduce pollution to 45.01, the ideal condition. To accelerate improvements in air quality, the Government can plan policies to reduce the use of coal by power plants and industry, as well as the use of electric motorized vehicles, resulting in an ideal reduction in pollution by 2024. In conclusion, pollution can be reduced effectively if the Government firmly implements policies to maintain that air quality remains stable below 50 points.
Solid waste has become a major environmental concern globally in recent years due to the tremendous increase in waste generation. However, these wastes (e.g., plastics and agro-residues) can serve as potential raw materials for the production of value-added products such as composites at low cost. The utilization of these waste materials in the composite industry is a good strategy for maintaining the sustainability of resources with economic and environmental benefits. In this report, the environmental impacts and management strategies of solid waste materials are discussed in detail. The study described the benefits of recycling and reusing solid wastes (i.e., plastic and agro-waste). The report also reviewed the emerging fabrication approaches for natural particulate hybrid nanocomposite materials. The results of this survey reveal that the fabrication techniques employed in manufacturing composite materials could significantly influence the performance of the resulting composite products. Furthermore, some key areas have been identified for further investigation. Therefore, this report is a state-of-the-art review and stands out as a guide for academics and industrialists.
This paper proposes an incentive model to involve communities and industries in effectively managing coastal waste in Makassar, Indonesia. The model seeks to incentivize stakeholders to invest in waste management solutions and enable public stakeholders to monitor and evaluate the progress of waste management activities. The model actively encourages participation from all stakeholders and builds upon existing efforts to promote environmental accountability. The proposed model includes several key components. It focused on public and private partnerships that should be fostered to coordinate stakeholder approaches and provide capital investment. It also focused on a financial reward scheme that should be adopted to incentivize businesses and individuals that invest in waste management initiatives. Performance bonus awards and tax incentives are proposed as possible incentive schemes. Lastly, a regulatory framework should be developed to ensure environmental standards are met and regulated. The framework should include regular reporting and auditing requirements and the implementation of penalties for those who fail to comply. The proposed incentive model seeks to engage stakeholders in effectively managing coastal waste in Makassar, Indonesia, through public and private incentive schemes.
Purpose: The level of the environment is gradually declining, especially with regard to the serious problem of solid waste. Solid waste segregation-at-source is seen as the most essential approach to helping the natural environment minimize the amount of waste generated before being transferred to waste disposal sites and landfills in many rapidly growing towns and cities in developing countries. However, a number of previous environmental-based research have focused only on the general scope of recycling, sustainable development, and the purchase intention for sustainable food products. This situation has led to useful and relevant information on the research scope of households’ intention to segregate solid waste at source, which remains largely unanswered. The aim of this paper is, therefore, to provide a literature review to develop a novel theoretical framework in understanding the determinants of households’ intention to practise solid waste segregation-at-source. Theoretical framework: The study provides a detailed explanation of the application of the Theory of Reasoned Action, the Fietkau-Kessel Model, the Focus Theory of Normative Conduct, and the Value-Basis Theory to predict the relationship between attitude, subjective norms, environmental concerns, and environmental knowledge of households on intention to practise solid waste segregation-at-source. Design/methodology/approach: This research is descriptive in nature. Findings: A better understanding of the potential mediator and moderator is needed to contribute to the body of knowledge on the causal relationship between the studied variables. In conclusion, the researchers discuss how the framework can be used to address future research implications as more evidence emerges. Research, practical and social implications: The current study is expected to broaden previous research in order to improve general understanding of attitudes and subjective norms towards the specific research scope of solid waste segregation-at-source.
The growing of plants hydroponically is a soilless form of growing in modern day agriculture. It helps to make feed available for animals throughout the season since it is not affected by what is faced by field grown crops. The use of animal waste, that is, their faeces, in the growth of forage was compared with commercial hydroponics solutions as a way of looking for a reduction in the cost incurred in the purchase of commercial hydroponics solutions. The study evaluated the use of organic nutrient solutions (ONS) alongside a standard/commercial nutrient solution in growing crops hydroponically on the growth, dry matter yield, water use efficiency, and chemical composition of hydroponic maize fodder. The ONS used were formulated from the dried faeces of cattle, poultry, rabbits, and swine. The prepared organic nutrient solutions with the control were used in growing the maize seeds for 10 days, and growth, yield, and chemical composition were determined. Results show the highest (196 g) dry matter yield for maize hydroponic fodder irrigated with poultry ONS. Similarly, maize irrigated with poultry ONS was significantly (P < 0.05) higher in CP content, while it was not significantly different from maize irrigated with cattle, swine, and commercial solutions. A lower water use efficiency value (0.19 kg DM/m3) was recorded for maize irrigated with cattle ONS. According to the study, irrigating maize with different organic nutrient solutions produced maize fodder with a higher yield and a similar chemical composition as the commercial nutrient solution.
Copyright © by EnPress Publisher. All rights reserved.