Adsorption is a widely used method for the treatment of dissolved contaminants. Various agro-industrial wastes have been explored as potential adsorbents, showing high efficiency in dye removal. Each adsorbate-adsorbent pair needs kinetic, and equilibrium models to scale up this process. In this work, the equilibrium, kinetics and thermodynamics of the corn Tuza-Red 40 system were evaluated under batch system at ph = 2.0 at temperatures of 25, 40, and 55 °C. The Langmuir, Freundlich and Temkin models were selected for the isotherm representation, while the Lagergren, Ho, and Elovich equations for the kinetics of the process. The Freundlich model presented the best fit to the isotherms, the adsorption kinetics was best described by the Ho equation, and the values for Gibbs free energy and entropy indicated the spontaneity and feasibility of the process.
This comprehensive review explores the forefront of nanohybrid materials, focusing on the integration of coordination materials in various applications, with a spotlight on their role in the development of flexible solar cells. Coordination material-based nanohybrids, characterized by their unique properties and multifunctionality, have garnered significant attention in fields ranging from catalysis and sensing to drug delivery and energy storage. The discussion investigates the synthesis methods, properties, and potential applications of these nanohybrids, underscoring their versatility in materials science. Additionally, the review investigates the integration of coordination nanohybrids in perovskite solar cells (PSCs), showcasing their ability to enhance the performance and stability of next-generation photovoltaic devices. The narrative further expands to encompass the synthesis of luminescent nanohybrids for bioimaging purposes and the development of layered, two-dimensional (2D) material-based nanostructured hybrids for energy storage and conversion. The exploration culminates in an examination of the synthesis of conductive polymer nanostructures, elucidating their potential in drug delivery systems. Last but not least, the article discusses the cutting-edge realm of flexible solar cells, emphasizing their adaptability and lightweight design. Through a systematic examination of these diverse nanohybrid materials, this review sheds light on the current state of the art, challenges, and prospects, providing valuable insights for researchers and practitioners in the fields of materials science, nanotechnology, and renewable energy.
Deficiencies in postharvest technology and the attack of phytopathogens cause horticultural products, such as tomatoes to have a very short shelf life. In addition to the economic damage, this can also have negative effects on health and the environment. The objective of this work is to evaluate an active coating of sodium alginate in combination with eugenol-loaded polymeric nanocapsules (AL-NP-EUG) to improve the shelf life of tomato. Using the nanoprecipitation technique, NPs with a size of 171 nm, a polydispersity index of 0.113 and a zeta potential of −2.47 mV were obtained. Using the HS-SPME technique with GC-FID, an encapsulation efficiency percentage of 31.85% was determined for EUG. The shelf-life study showed that the AL-NP-EUG-treated tomatoes maintained firmness longer than those without the coating. In addition, the pathogenicity test showed that tomatoes with AL-NP-EUG showed no signs of damage caused by the phytopathogen Colletotrichum gloesporoides. It was concluded that the formulation of EUG nanoencapsulated and incorporated into the edible coating presents high potential for its application as a natural nanoconservative of fruit and vegetable products such as tomato.
The wide distribution of the common beech (Fagus sylvatica) in Europe reveals its great adaptation to diverse conditions of temperature and humidity. This interesting aspect explains the context of the main objective of this work: to carry out a dendroclimatic analysis of the species Fagus sylvatica in the Polaciones valley (Cantabria), an area of transition with environmental conditions from a characteristic Atlantic type to more Mediterranean, at the southern limit of its growth. The methodology developed is based on the analysis of 25 local chronologies of growth rings sampled at different altitudes along the valley, generating a reference chronology for the study area. Subsequently, the patterns of growth and response to climatic variations are estimated through the response and correlation function, and the most significant monthly variables in the annual growth of the species are obtained. Finally, these are introduced into a Geographic Information System (GIS) where they are cartographically modeled in the altitudinal gradient through multivariate analysis, taking into account the different geographic and topographic variables that influence the zonal variability of the species response. The results of the analyses and cartographic models show which variables are most determinant in the annual growth of the species and the distribution of its climatic response according to the variables considered.
This paper highlights the opportunities as well as challenges posed for Bangladesh by the Belt and Road Initiative (BRI) of China. BRI is being considered as the most expensive project ever initiated connecting more than half of the world population from Asia, Europe and Africa. For writing this paper, the authors utilized published sources such as journal articles, newspaper articles and web-based information published from 2013 to 2024. The article proposes that although the involvement of Bangladesh in the BRI is not absolutely free of challenges, it can serve the ultimate national interest through greater connectivity with other countries, increased volume of trade and economic activities and socio-cultural exchange. Although, as the originator and major contributor of the BRI, China will be the principal benefiter, other partner countries can also attain considerable benefits out of this historical mega scheme through the application of appropriate vision and strategic implementation. This paper has highlighted those benefits/opportunities and challenges for Bangladesh that can be beneficial for upcoming research projects particularity aimed at development studies, political economy and international relations. On the other hand, based on the arguments made on this paper, policymakers and businessmen can formulate their best policies as well as trading strategies with mutual benefits for all the stakeholders involved.
Hybrid nanofluids have several potential applications in various industries, including electronics cooling, automotive cooling systems, aerospace engineering, and biomedical applications. The primary goal of the study is to provide more information about the characteristics of a steady and incompressible stream of a hybrid nanofluid flowing over a thin, inclined needle. This fluid consists of two types of nanoparticles: non-magnetic nanoparticles (aluminium oxide) and magnetic nanoparticles (ferrous oxide). The base fluid for this nanofluid is a mixture of water and ethylene glycol in a 50:50 ratio. The effects of inclined magnetic fields and joule heating on the hybrid nanofluid flow are considered. The Runge-Kutta fourth-order method is used to numerically solve the partial differential equations and governing equations, which are then converted into ordinary differential equations using similarity transformations. Natural convection refers to the fluid flow that arises due to buoyancy forces caused by temperature differences in a fluid. In the context of an inclined needle, the shape and orientation of the needle have significantly affected the flow patterns and heat transfer characteristics of the nanofluid. These analyses protest that raising the magnetic parameter results in an increase in the hybrid nanofluid thermal profile under slip circumstances. Utilizing the potential of hybrid nanofluids in a variety of technical applications, such as energy systems, biomedicine, and thermal management, requires an understanding of and ability to manipulate these effects.
Copyright © by EnPress Publisher. All rights reserved.