The goal of this work was to create and assess machine-learning models for estimating the risk of budget overruns in developed projects. Finding the best model for risk forecasting required evaluating the performance of several models. Using a dataset of 177 projects took into account variables like environmental risks employee skill level safety incidents and project complexity. In our experiments, we analyzed the application of different machine learning models to analyze the risk for the management decision policies of developed organizations. The performance of the chosen model Neural Network (MLP) was improved after applying the tuning process which increased the Test R2 from −0.37686 before tuning to 0.195637 after tuning. The Support Vector Machine (SVM), Ridge Regression, Lasso Regression, and Random Forest (Tuned) models did not improve, as seen when Test R2 is compared to the experiments. No changes in Test R2’s were observed on GBM and XGBoost, which retained same Test R2 across different tuning attempts. Stacking Regressor was used only during the hyperparameter tuning phase and brought a Test R2 of 0. 022219.Decision Tree was again the worst model among all throughout the experiments, with no signs of improvement in its Test R2; it was −1.4669 for Decision Tree in all experiments arranged on the basis of Gender. These results indicate that although, models such as the Neural Network (MLP) sees improvements due to hyperparameter tuning, there are minimal improvements for most models. This works does highlight some of the weaknesses in specific types of models, as well as identifies areas where additional work can be expected to deliver incremental benefits to the structured applied process of risk assessment in organizational policies.
In the process of forest recreation value development, there are some characteristics, such as large amount of investment capital, long financing recovery cycle and high potential risks, which lead to limited capital source and prominent financing risks. To achieve sustainable development, forest recreational value development enterprises must solve the financing dilemma, therefore, it is very urgent to identify the financing risk factors. The research constructed financing risk evaluation index system through WSR (Wuli-Shili-Renli) methodology (from affair law, matter principle and human art dimensions), taking S National Forest Park at Fujian Province as a case study, the analytic hierarchy process (AHP) and fuzzy comprehensive evaluation method were used for empirical analysis. The results showed that for the first level indicators, operational risk should be paid close attention to, followed by political risk and environmental risk. Among the secondary level indicators, policy changes, financing availability and market demand need attention, which are consistent with the result of field survey. Based on that, countermeasures were put forward such as the multiple collaborative linkage and effective internal control; reduction on operating costs and broaden financing channels; encouragement diversification of investment entities and improvement of financial and credit support; strengthening government credit supervision, optimizing financing risk evaluation, and building a smart tourism financing information platform, to reduce and control financing risks, then promote the development of forest recreation value projects.
The rise of financial inclusion has notably increased household engagement in risky financial asset allocation, posing challenges to macro-financial stability. This study explored the crucial role of financial literacy in enabling households to effectively engage with complex financial markets and products. Specifically, it examined how different aspects of financial literacy—knowledge, attitudes, and skills—influence both the participation and depth of household investment in risky financial assets in China. Utilizing a comprehensive dataset from the 2019 China Household Finance Survey, which included 32,458 households, this study employed a robust indicator system and regression analysis via STATA 17.0 to assess these impacts. The results demonstrated that enhancements in financial literacy significantly foster increased engagement and deeper involvement in risky asset allocation, particularly through improved financial attitudes. Additionally, the analysis revealed that households led by women show a higher propensity towards risky asset investments than those led by men. These insights suggested the potential for targeted financial education to improve the financial health and economic resilience of Chinese households.
Copyright © by EnPress Publisher. All rights reserved.