This study applies machine learning methods such as Decision Tree (CART) and Random Forest to classify drought intensity based on meteorological data. The goal of the study was to evaluate the effectiveness of these methods for drought classification and their use in water resource management and agriculture. The methodology involved using two machine learning models that analyzed temperature and humidity indicators, as well as wind speed indicators. The models were trained and tested on real meteorological data to assess their accuracy and identify key factors affecting predictions. Results showed that the Random Forest model achieved the highest accuracy of 94.4% when analyzing temperature and humidity indicators, while the Decision Tree (CART) achieved an accuracy of 93.2%. When analyzing wind speed indicators, the models’ accuracies were 91.3% and 93.0%, respectively. Feature importance revealed that atmospheric pressure, temperature at 2 m, and wind speed are key factors influencing drought intensity. One of the study’s limitations was the insufficient amount of data for high drought levels (classes 4 and 5), indicating the need for further data collection. The innovation of this study lies in the integration of various meteorological parameters to build drought classification models, achieving high prediction accuracy. Unlike previous studies, our approach demonstrates that using a wide range of meteorological data can significantly improve drought classification accuracy. Significant findings include the necessity to expand the dataset and integrate additional climatic parameters to improve models and enhance their reliability.
The urgency of adapting urban areas to the increasing impacts of climate change has prompted the scientific community to seek new approaches in partnership with public entities and civil society organizations. In Malaysia, Penang Island has developed a nature-based urban climate adaptation program (PNBCAP) seeking to increase urban resilience, reduce urban heat and flooding, strengthening social resilience, and build institutional capacity. The project includes a strong knowledge transfer component focused on encouraging other cities in the country to develop and implement adaptation policies, projects, and initiatives. This research develops a model adopting the most efficient processes to accelerate the transfer of knowledge to promote urban adaptation based on the PNBCAP. The methodology is developed based on a review of literature focused on innovation systems and change theories. The integration of success strategies in adaptation contributes to informing the creation of solutions around the alliance of local, state, and national government agencies, scientific institutions, and civil society organizations, in a new framework designated the Malaysian Adaptation Sharing Hub (MASH). MASH is structured in 3-steps and will function as an accelerator for the implementation of urban climate adaptation policies, with the target of creating 2 new adaptation-related policies to be adopted annually by each city member, based on knowledge gathered in the PNBCAP. It is concluded that, to speed up urban adaptation, it is necessary to reinforce and promote the sharing of knowledge resulting from or associated with pilot projects.
This study aimed to examine the impact of digital leadership among school principals and evaluate the mediating effect of Professional Learning Communities (PLCs) on enhancing teachers’ innovation skills for sustainable technology integration, both in traditional classroom settings and e-learning environments. Employing a quantitative approach with a regression design model, Structural Equation Modelling (SEM) and Partial Least Squares (PLS-SEM) were utilized in this research. A total of 257 teachers from 7 excellent senior high schools in Makassar city participated in the study, responding to the questionnaires administered. The study findings indicate that while principal digital leadership does not directly influence teachers’ innovation skills in technology integration, it directly impacts Professional Learning Communities (PLCs). Moreover, PLCs themselves have a significant influence on teachers’ innovation skills in technology integration. The structural model presented in this study illustrates a noteworthy impact of principal digital leadership on teachers’ innovation skills for technology integration through Professional Learning Communities (PLCs), with a coefficient value of 47.4%. Principal digital leadership is crucial in enhancing teachers’ innovation skills for sustainable technology integration, primarily by leveraging Professional Learning Communities (PLCs). As a result, principals must prioritize the creation of supportive learning environments and implement programs to foster teachers’ proficiency for sustainable technology integration. Additionally, teachers are encouraged to concentrate on communication, collaboration, and relationship-building with colleagues to exchange insights, address challenges, and devise solutions for integrating technology, thereby contributing to sustained school improvement efforts. Finally, this research provides insights for school leaders, policymakers, and educators, emphasizing the need to leverage PLCs to enhance teaching practices and student outcomes, particularly in sustainable technology integration.
Diabetic retinopathy (DR) is a major cause of blindness globally. Effective screening programs are essential to mitigate this burden. This review outlines key principles and practices in implementing DR screening programs, emphasizing the roles of technology, patient education, and healthcare system integration. Our analysis highlights key principles for establishing successful screening initiatives, including the importance of regular screenings, optimal intervals, recommended technologies, and necessary infrastructure. We emphasize the roles of healthcare providers, patients, and policymakers in ensuring the effectiveness of these programs. Our recommendations aim to support the creation of robust policies that mitigate the impact of DR, ultimately improving public health outcomes and reducing the incidence of blindness due to diabetic retinopathy.
This study will explore the direct and indirect impacts of collaborative governance innovation on organizational value creation in higher vocational education in China in the context of the digital era. This paper employs a mixed research methodology to construct and validate a model of the relationship between collaborative governance, digital competence, value chain restructuring, and value creation. This study first adopted an exploratory sequential design. In the qualitative interviews, 15 experts from education, business, and other related fields were used as respondents to explore accurate variable factors and determine the value of the research framework. The quantitative research used structural equation analysis to analyze 979 valid online questionnaires. Finally, the rationality of the research results was verified through case studies. The findings are clear: collaborative governance significantly positively impacts value creation, indirectly affecting organizational value creation through value chain restructuring. Furthermore, digital capabilities significantly contribute to the value chain restructuring process. This paper provides a theoretical basis and practical guidance for higher vocational education organizations to improve their governance and innovation capabilities.
The cars industry has undergone significant technological advancements, with data analytics and artificial intelligence (AI) reshaping its operations. This study aims to examine the revolutionary influence of artificial intelligence and data analytics on the cars sector, particularly in terms of supporting sustainable business practices and enhancing profitability. Technology-organization-environment model and the triple bottom line technique were both used in this study to estimate the influence of technological factors, organizational factors, and environmental factors on social, environmental (planet), and economic. The data for this research was collected through a structured questionnaire containing closed questions. A total of 327 participants responded to the questionnaire from different professionals in the cars sector. The study was conducted in the cars industry, where the problem of the study revolved around addressing artificial intelligence in its various aspects and how it can affect sustainable business practices and firms’ profitability. The study highlights that the cars industry sector can be transformed significantly by using AI and data analytics within the TOE framework and with a focus on triple bottom line (TBL) outputs. However, in order to fully benefit from these advantages, new technologies need to be implemented while maintaining moral and legal standards and continuously developing them. This approach has the potential to guide the cars industry towards a future that is environmentally friendly, economically feasible, and socially responsible. The paper’s primary contribution is to assist professionals in the industry in strategically utilizing Artificial Intelligence and data analytics to advance and transform the industry.
Copyright © by EnPress Publisher. All rights reserved.