The increase in world carbon emissions is always in line with national economic growth programs, which create negative environmental externalities. To understand the effectiveness of related factors in mitigating CO2 emissions, this study investigates the intricate relationship among macro-pillars such as economic growth, foreign investment, trade and finance, energy, and renewable energy with CO2 emissions of the high gross domestic product economies in East Asia Pacific, such as China, Japan, Korea, Australia and Indonesia (EAP-5). Through the application of the Vector Error Correction Model (VECM), this research reveals the long-term equilibrium and short-term dynamics between CO2 emissions and selected factors from 1991 to 2020. The long-term cointegration vector test results show that economic growth and foreign investment contribute to carbon reduction. Meanwhile, the short-term Granger causality test shows that economic growth has a two-way causality towards carbon emissions, while energy consumption and renewable energy consumption have a one-way causality towards carbon emissions. In contrast, the variables trade, foreign direct investment, and domestic credit to the private sector do not have two-way causality towards CO2 emissions. The findings reveal that economic growth and foreign investment play significant roles in carbon reduction, which are observed in long-term causality relationships, while energy consumption and renewable energy are notable factors. Thus, the study offers implications for mitigating environmental concerns on national economic growth agendas by scrutinizing and examining the efficacy of related factors.
This study aims to compare investment in human capital, equality of gender education in Kuwait before and after adopting SDG 4 and SDG 5 in 2015. It also aims to assess the effect of women’s empowerment on economic growth. To achieve this objective, published data on the State of Kuwait were collected from the World Bank DataBank between 1992 and 2022 and from the Central Bank of Kuwait. The study employed autoregressive distributed lag (ARDL) to determine the impact of women’s empowerment on economic development. The analysis results revealed that the State of Kuwait provided high-quality education for both genders. The results also showed that women are more educated than men. However, this was not reflected in the role of women in the country’s politics, as their participation in parliament and government is still limited. Similarly, women’s participation in business and economic activities is still limited. Finally, the results of the ARDL test showed that women’s education and their political, business, and economic empowerment affect economic development in the short and long run.
PPGIS platforms have been widely used to map social actors since the emergence of open access webGIS platforms. This identification of citizen initiatives is based on the physical location, but is rarely combined with social networking. This research seeks to close that gap by using the platIC web-based mapping tool for citizen initiatives, together with their interrelationships. Therefore, a methodical procedure has been defined to construct a geolocalised graph by identifying and categorising linked nodes. Method steps have been tested in three case studies in the Malaga region: Malaga city, Benalmadena, and Valle del Genal. They were selected for a comparative analysis in three different urban and socio-economic scenarios, namely: a tourist destination with a high density of Spanish population and floating city users; a sun-and-beach destination with a significant presence of resident foreign population; and a rural area suffering from depopulation, respectively. Mapping reveals a higher density of citizen initiatives in central urban areas and with social conflicts. Social graphs show a wider interconnection of nodes in rural areas, but isolated nodes are spread more widely there. Monitoring active citizen initiatives could serve as a basis for local administration to involve the citizenry in the management of current issues in the urban and rural context. Future research may promote new plugins to improve participatory process through webGIS platforms.
This study aims to explore the implications of imported electrical equipment in Indonesia, analysing both short-term and long-term impacts using a quantitative approach. The research focuses on understanding how various economic factors, such as domestic production, international pricing, national income, and exchange rates, influence the country’s import dynamics in the electrical equipment sector. Employing an Error Correction Model (ECM) for regression analysis, the study utilises time-series data from 2007 to 2021 to delve into the complex interplay of these variables. The methodology involves a comprehensive analysis using the Augmented Dickey-Fuller and Phillips-Perron tests to assess the stationarity of the data. This approach ensures the robustness of the ECM, which is employed to analyse the short-term and long-term effects of the identified variables on electrical equipment imports in Indonesia. The results reveal significant relationships between these economic factors and import levels. In the short term, imports are shown to be sensitive to changes in domestic economic conditions and international market prices, while in the long term, the country’s economic growth, reflected through GDP, emerges as a significant determinant. The findings suggest that Indonesia’s electrical equipment import policies must adapt highly to domestic and international economic changes. In the short term, a responsive approach is required to manage the immediate impacts of market fluctuations. The study highlights the importance of aligning import strategies with broader economic growth and environmental sustainability goals for long-term sustainability. Policymakers are advised to focus on enhancing domestic production capabilities, reducing import dependency, and ensuring that environmental considerations are integral to import policies. This study contributes to understanding import dynamics in a developing country context, offering valuable insights for policymakers and industry stakeholders in shaping strategies for economic growth and sustainability in the electrical equipment sector. The findings underscore the need for a balanced, data-driven approach to managing imports, aligning short-term responses with long-term strategic objectives for Indonesia’s ongoing development and industrial advancement.
Indonesia, an emerging archipelagic nation, possesses abundant natural resources spanning marine, land (including forests and water sources), and diverse biological riches. The agricultural sector emerges as a pivotal driver of growth across the country, exhibiting extensive distribution. Consequently, there is an urgent imperative for comprehensive research to bolster and optimize the performance of this sector. This study aims to meticulously analyze and scrutinize macroeconomic variables aimed at enhancing Indonesia’s agricultural sector. Through the utilization of a dynamic panel model, the study zeroes in on crucial variables: economic growth in the agricultural sector, farmer terms of exchange, human development index, population density, inflation, average daily wages, and lagged economic growth data from each province in Indonesia. The best model for dynamic panel testing, employing both First Difference Generalized Method of Moments (FD-GMM) and Generalized Method of Moments System (SYS-GMM) approaches, is identified as the SYS-GMM model. This model exhibits unbiased and consistent estimation, as evidenced by the Arellano-Bond (AB) test and Sargan test results. The analysis conducted using this selected model reveals notable findings. Lagging agricultural sector performance, human capital measured by the Human Development Index (HDI), and farmers’ exchange rates are found to significantly and positively influence the economic growth of the agricultural sector. Conversely, inflation exerts a significant and negative impact on sectoral growth. However, wage levels and population density do not demonstrate a significant partial effect on the economic growth of the agricultural sector.
This research investigates the impact of modern technological methods of knowledge management (KM) and total quality management (TQM) on the performance of faculty members in educational colleges in Jordan. Drawing on a survey conducted with 306 faculty members, the study examines the influence of technology on teaching methodologies and academic quality within the Jordanian higher education context. The study utilizes the Technology Acceptance Model (TAM) to back up the modern technological methods of knowledge management (KM) and total quality management (TQM) models. The findings reveal a generally positive perception among respondents regarding the beneficial effects of modern technological tools on teaching effectiveness, collaboration, and innovation. Additionally, technology-enhanced TQM practices were found to contribute to improvements in curriculum design, student engagement, and administrative processes. Regression and correlation analyses support significant relationships between technology-enabled KM and TQM practices and faculty performance, highlighting the transformative role of technology in shaping the future of higher education in Jordan. Recommendations are provided for educational institutions to enhance the integration of technology and foster a culture of innovation and continuous improvement among faculty members.
Copyright © by EnPress Publisher. All rights reserved.