The safeguarding of agricultural land is rooted in national land surveys and remote sensing data, which are enhanced by contemporary information technology. This framework facilitates the monitoring and regulation of unauthorized alterations in cultivated land usage. This paper aims to analyze land policies at the national, provincial, and local levels, investigate the cultivated land protection strategies implemented within the research region, where the policies have gained societal acceptance, and propose recommendations and countermeasures to enhance the development and utilization of land resources. The central issue of this study is to identify the challenges in achieving a balance between human activities and natural ecosystems. To address this issue, the research employs a combination of literature review, semi-structured interviews, text analysis, and content analysis, emphasizing the integration of empirical fieldwork and theoretical frameworks. Key areas of focus include: (a) the current state of the farmland protection system, (b) the legal foundations for local enforcement, (c) the systematic mechanisms for implementing arable land protection, and (d) the coordinated oversight system involving both the Party and government. Notably, the practice of cultivated land protection faces several challenges, primarily stemming from two factors. Firstly, there exists a disconnect between the economic interests of certain illegal land users and the objectives of land management, which hinders effective enforcement. Secondly, environmental repercussions arise from misinterpretations of land policy or non-compliant land development practices aimed at profit, which contradict the goals of ecological sustainability. The study examines two approaches to address the issue: the distribution and effective use of land resources, and the capacity for monitoring and early warning systems. Findings indicate that Dongtai City in Jiangsu Province has rigorously implemented all national land management policies, while also preserving the adaptability of local townships in practical applications, thereby ensuring the consistency of both the quality and quantity of arable land.
The aim of this research is to determine the incidence of socioeconomic variables in migration flows from the main countries of origin that form part of the international South-North migration corridor, such as Mexico, China, India, and the Philippines, during the 1990–2022 period. The independent variables considered are GDP per capita, unemployment, poverty, higher education, and public health, while the dependent variable is migration flows. An econometric panel data model is implemented. The tests conducted indicate that all variables have an integration order of I (1) and exhibit long-term equilibrium. The econometric models used, Dynamic Ordinary Least Squares (DOLS) and Fully Modified Ordinary Least Squares (FMOLS), reveal that unemployment and poverty had the strongest influence on migration flows. In both models, within this international migration corridor, GDP per capita, higher education, and health follow in order of importance.
Madura Island, with more than half of its population, are women encountering socio-economic problems, which eventually create high poverty and unemployment rates. However, the Madurese are also well-known for their resiliency and entrepreneurial characteristics. The effort to solve the issues by empowering the community, women in particular, has been taken seriously primarily by entrepreneurs who were born and raised in the community. Therefore, this research aims to gain insight into the current Madurese entrepreneur’s business pattern and their social concerns in order to propose a strategy to increase productivity as an effort to empower women’s communities. The methodology is qualitative research, which collects data using semi-structured interviews with representatives of the Madurese entrepreneurs in four areas of Madura Island. Their responses are then transcripted and coded for content analysis based on the designed themes. The result shows that they recognise and practise the social entrepreneurship (SE) pattern, although they do not understand the term. Subsequently, the technological application for business operations in general is still limited to the usage of digital technology (DT) for marketing and transaction activities, which helps increase business performance or productivity. Hence, the initiation of technosociopreneurship as a strategy to further develop SE activities with the hope of increasing productivity in empowering women’s communities is proposed. Further research development is advised using quantitative methods for generalisable findings.
This study investigates the awareness of environmentally friendly (green) dentistry practices among dental students and faculty at Ajman University in the United Arab Emirates. The primary objective is to assess their understanding and application of eco-friendly dental practices, including waste management, energy conservation, and sustainable material usage. Using a descriptive cross-sectional design, an online survey was administered to 231 randomly selected participants. The results show that although awareness of green dentistry has increased, its practical implementation remains limited. Specialists displayed the highest levels of knowledge and practice, while general practitioners demonstrated the least. Male participants showed greater experience and expertise compared to females, and the age group of 30–39 exhibited the highest levels of knowledge and practice, although age was not found to significantly affect awareness or usage. The findings highlight the need for enhanced education and encouragement of green dentistry to protect the environment and promote sustainable dental practices.
This paper explores the integration of Large Language Models (LLMs) and Software-Defined Resources (SDR) as innovative tools for enhancing cloud computing education in university curricula. The study emphasizes the importance of practical knowledge in cloud technologies such as Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), DevOps, and cloud-native environments. It introduces Lean principles to optimize the teaching framework, promoting efficiency and effectiveness in learning. By examining a comprehensive educational reform project, the research demonstrates that incorporating SDR and LLMs can significantly enhance student engagement and learning outcomes, while also providing essential hands-on skills required in today’s dynamic cloud computing landscape. A key innovation of this study is the development and application of the Entropy-Based Diversity Efficiency Analysis (EDEA) framework, a novel method to measure and optimize the diversity and efficiency of educational content. The EDEA analysis yielded surprising results, showing that applying SDR (i.e., using cloud technologies) and LLMs can each improve a course’s Diversity Efficiency Index (DEI) by approximately one-fifth. The integrated approach presented in this paper provides a structured tool for continuous improvement in education and demonstrates the potential for modernizing educational strategies to better align with the evolving needs of the cloud computing industry.
The idea of emotions that is concealed in human language gives rise to metaphor. It is challenging to compute and develop a framework for emotions in people because of its detachment and diversity. Nonetheless, machine translation heavily relies on the modeling and computation of emotions. When emotion metaphors are calculated into machine translation, the language is significantly more colorful and satisfies translating criteria such as truthfulness, creativity and beauty. Emotional metaphor computation often uses artificial intelligence (AI) and the detection of patterns and it needs massive, superior samples in the emotion metaphor collection. To facilitate data-driven emotion metaphor processing through machine translation, the study constructs a bi-lingual database in both Chinese and English that contains extensive emotion metaphors. The fundamental steps involved in generating the emotion metaphor collection are demonstrated, comprising the basis of theory, design concepts, acquiring data, annotating information and index management. This study examines how well the emotion metaphor corpus functions in machine translation by proposing and testing a novel earthworm swarm-tunsed recurrent network (ES-RN) architecture in a Python tool. Additionally, the comparison study is carried out using machine translation datasets that already exist. The findings of this study demonstrated that emotion metaphors might be expressed in machine translation using the emotion metaphor database developed in this research.
Copyright © by EnPress Publisher. All rights reserved.