The present study assessed the potential of sediment loading in Beteni, Lauruk, Andheri, and Harpan sub-watersheds of Phewa Lake and estimated the sediment yield in the year 2020. Morphometry, land use/land cover, geology, climate, and human and development factors of the sub-watersheds were studied to assess the potential of sediment loading in the sub-watersheds. SRTM DEM was used for the computation of morphometric parameters and land use/land cover maps were prepared by using Landsat imagery. Geology, rainfall data, census data, and road maps were collected from various secondary sources. The sediment yields of the four sub-watersheds in the year 2020 were estimated by measuring the sediment volume deposited in the sediment retention ponds at the outlet of each sub-watershed. Results indicated that Beteni had the highest potential for sediment loading, while Harpan had the lowest. Likewise, the sediment yields for Beteni, Lauruk, Andheri, and Harpan sub-watersheds in 2020 were estimated at 1,420.67 m3/km2/year, 2,280.14 m3/km2/year, 1,666.77 m3/km2/year, and 766.42 m3/km2/year, respectively. To reduce sedimentation in Phewa Lake, it is recommended to regularly maintain siltation dams and construct check dams along the drainage slopes, alongside other soil conservation measures and appropriate land use practices in the upstream areas of the sub-watersheds.
Facing the digital economy era, considerable attention is paid to the importance of understanding the fundamental impact on the information and development of blended teaching methods regarding the higher education. For this reason, the purpose of this study is to answer the challenges brought by the digital economy era, identify the effective teaching methods which would be used in English Correspondence course in the era of digital economy, aiming to form the patterns of learning, provide high motivation, strength and knowledge, and most importantly contribute to the complex competences of future working. For further research, it is expected to be able to prove that using the blended teaching methods will effectively improve students’ communication skills and learning efficiency, enhance students’ learning experience and critical thinking skills.
Homosexuality, as a sexual orientation, encompasses individuals who experience love and sexual desire exclusively towards individuals of the same sex. Those who identify with this sexual orientation are referred to as homosexuals. Recognizing that various sexual orientations are equally valid, it is important to understand that homosexuality is a complex phenomenon. This paper aims to shed light on the current state of homosexuality in China. It holds universal significance not only for promoting cultural diversity, protecting human rights, strengthening the legal framework, and advancing society, but also for the well-being and livelihood of this vulnerable group.
The primary school stage is the key stage for students to form good habits and lay a good learning foundation, especially in primary schools, Chinese classes account for the largest proportion of all courses, the focus of learning began to shift to understanding and mastering. Through scientific methods, teachers can effectively improve the concentration of Chinese learning of primary school students in order to improve their interest and overall level,to have a profound impact on the future study and life of primary school students. This paper analyzes the importance and strategies of teachers' attention training in the middle Chinese classroom of primary school.
This paper applies Nida's dynamic equivalence theory to the appreciation of Hardy's masterpiece Tess of the D 'Urbervilles, discusses the translation of the meaning and spirit of the source text in terms of dialects, idioms and annotations from the perspective of functional equivalence theory, and further explores whether the spirit and value felt by the readers of the target text is dynamically equivalent to that felt by the readers of the source text. Finally, this paper shows the clever application of this theory and the determination to promote cultural exchange through Tess of the D 'Urbervilles.
In this paper, we modeled and simulated two tandem solar cell structures (a) and (b), in a two-terminal configuration based on inorganic and lead-free absorber materials. The structures are composed of sub-cells already studied in our previous work, where we simulated the impact of defect density and recombination rate at the interfaces, as well as that of the thicknesses of the charge transport and absorber layers, on the photovoltaic performance. We also studied the performance resulting from the use of different materials for the electron and hole transport layers. The two structures studied include a bottom cell based on the perovskite material CsSnI3 with a band gap energy of 1.3 eV and a thickness of 1.5 µm. The first structure has an upper sub-cell based on the CsSnGeI3 material with an energy of 1.5 eV, while the second has an upper sub-cell made of Cs2TiBr6 with a band gap energy of 1.6 eV. The theoretical model used to evaluate the photocurrent density, current-voltage characteristic, and photovoltaic parameters of the constituent sub-cells and the tandem device was described. Current matching analysis was performed to find the ideal combination of absorber thicknesses that allows the same current density to be shared. An efficiency of 29.8% was obtained with a short circuit current density Jsc = 19.92 mA/cm2, an open circuit potential Voc = 1.46 V and a form factor FF = 91.5% with the first structure (a), for a top absorber thickness of CsSnGeI3 of 190 nm, while an efficiency of 26.8% with Jsc = 16.74, Voc = 1.50 V and FF = 91.4% was obtained with the second structure (b), for a top absorber thickness of Cs2TiBr6 of 300 nm. The objective of this study is to develop efficient, low-cost, stable and non-toxic tandem devices based on lead-free and inorganic perovskite.
Copyright © by EnPress Publisher. All rights reserved.