Petroleum Economist. COVID-19 puts African energy on pause [Internet]. London: Petroleum Economist; 2020. Available from: https://pemedianetwork.com/petroleum-economist/articles/upstream/2020/covid-19-puts-african-energy-on-pause/.
Hoang AT, Nižetić S, Olcer AI, et al. Impacts of COVID-19 pandemic on the global energy system and the shift progress to renewable energy: Opportunities challenges and policy implications. Energy Policy 2021; 154: 112322. doi: 10.1016/j.enpol.2021.112322.
Richter A, Müller R, Benick J, et al. Design rules for high-efficiency both-sides-contacted silicon solar cells with balanced charge carrier transport and recombination losses. Nature Energy 2021; 6(4): 429–438. doi: 10.1038/s41560-021-00805-w.
You P, Tang G, Yan F. Two-dimensional materials in perovskite solar cells. Materials Today Energy 2019; 11: 128–158. doi: 10.1016/j.mtener.2018.11.006.
Tong G, Ono LK, Qi Y. Recent progress of all bromide inorganic perovskite solar cells. Energy Technology 2019; 8(4): 1900961. doi: 10.1002/ente.201900961.
Wang S, Wang A, Hao F. Toward stable lead halide perovskite solar cells: A knob on the A/X sites components. iScience 2022; 25(1): 103599. doi: 10.1016/j.isci.2021.103599.
Li J, Duan J, Yang X, et al. Review on recent progress of lead-free halide perovskites in optoelectronic applications. Nano Energy 2021; 80: 105526. doi: 10.1016/j.nanoen.2020.105526.
Wang K, Zheng L, Hou Y, et al. Overcoming Shockley-Queisser limit using halide perovskite platform. Joule 2022; 6(4): 756–771. doi: 10.1016/j.joule.2022.01.009.
Chen Q, Marco ND, Yang Y, et al. Under the spotlight: The organic-inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 2015; 10(3): 355–396. doi: 10.1016/j.nantod.2015.04.009.
Duan L, Walter D, Chang N, et al. Stability challenges for the commercialization of perovskite—Silicon tandem solar cells. Nature Reviews Materials 2023; 8: 261–281. doi: 10.1038/s41578-022-00521-1.
Jošt M, Köhnen E, Al-Ashouri A, et al. Perovskite/CIGS tandem solar cells: From certified 24.2% toward 30% and beyond. ACS Energy Letters 2022; 7(4): 1298–1307. doi: 10.1021/acsenergylett.2c00274.
Arbouz H. Optimization of lead-free CsSnI3-based perovskite solar cell structure. Applied Rheology 2023; 33(1): 20220138. doi: 10.1515/arh-2022-0138.
Arbouz H. Simulation and optimization of a lead-free CS2TiBr6 perovskite solar cell structure. In: Proceedings of International Conference on Electrical Computer Communications and Mechatronics Engineering; 2022 Nov 16–18; Malé. New York: IEEE; 2022. p. 1–6.
Li D, Song L, Chen Y, et al. Modeling thin film solar cells: From organic to perovskite. Advanced Science 2019; 7(1): 1901397. doi: 10.1002/advs.201901397.
Sam R, Diasso A, Zouma B, Zougmoré F. 2D modeling of solar cell p-n radial junction: Study of photocurrent density and quantum efficiency in static mode under monochromatic illumination. Smart Grid and Renewable Energy 2020; 11(12): 191–200. doi: 10.4236/sgre.2020.1112012.
Kumar A, Singh S, Mohammed MK, Shalan AE. Computational modelling of two terminal CIGS/Perovskite tandem solar cells with power conversion efficiency of 23.1%. European Journal of Inorganic Chemistry 2021; 2021(47): 4959–4969. doi: 10.1002/ejic.202100214.
Viezbicke BD, Patel S, Davis BE, Birnie III DP. Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Physica Status Solidi B 2015; 252(8): 1700–1710. doi: 10.1002/pssb.201552007.
Courel M, Andrade-Arvizu JA, Vigil-Galán O. Towards a CdS/Cu2ZnSnS4 solar cell efficiency improvement: A theoretical approach. Applied Physics Letters 2014; 105(23): 233501. doi: 10.1063/1.4903826.
Hermerschmidt F, Savva A, Georgiou E, et al. Influence of the hole transporting layer on the thermal stability of inverted organic photovoltaics using accelerated-heat lifetime protocols. ACS Applied Materials and Interfaces 2017; 9(16): 14136–14144. doi: 10.1021/acsami.7b01183.
Cao Q, Li Y, Zhang H, et al. Efficient and stable inverted perovskite solar cells with very high fill factors via incorporation of star-shaped polymer. Science Advances 2021; 7(28). doi: 10.1126/sciadv.abg0633.
Arbouz H. Modeling of a tandem solar cell structure based on CZTS and CZTSe absorber materials. International Journal of Computational Science and Engineering 2022; 8(1): 14–18. doi: 10.22399/ijcesen.843038.
Bansal S, Aryal P. Evaluation of new materials for electron and hole transport layers in perovskite-based solar cells through SCAPS-1D simulations. In: Proceedings of the 43rd Photovoltaic Specialists Conference (PVSC); 2016 Jun 5–10; Portland. New York: IEEE; 2016. p. 0747–0750.
Jani MR, Islam MT, Al Amin SM, et al. Exploring solar cell performance of inorganic Cs2TiBr6 halide double perovskite: A numerical study. Superlattices and Microstructures 2020; 146: 106652. doi: 10.1016/j.spmi.2020.106652.
Lin S, Zhang B, Lü TY, et al. Inorganic lead-free B-γ-CsSnI3 perovskite solar cells using diverse electron-transporting materials: A simulation study. ACS Omega 2021; 6(40): 26689–26698. doi: 10.1021/acsomega.1c04096.
Singh N, Agarwal A, Agarwal M. Numerical simulation of highly efficient lead-free perovskite layers for the application of all-perovskite multi-junction solar cell. Superlattices and Microstructures 2021; 149: 106750. doi: 10.1016/j.spmi.2020.106750.
Moiz SA. Optimization of hole and electron transport layer for highly efficient lead-free Cs2TiBr6-based perovskite solar cell. Photonics 2022; 9(1): 23. doi: 10.3390/photonics9010023.
Islam MT, Jani MR, Rahman S, et al. Investigation of non-Pb all-perovskite 4-T mechanically stacked and 2-T monolithic tandem solar devices utilizing SCAPS simulation. SN Applied Sciences 2021; 3: 504. doi: 10.1007/s42452-021-04487-7.
Madan J, Shivani, Pandey R, Sharma R. Device simulation of 17.3% efficient lead-free all-perovskite tandem solar cell. Solar Energy 2020; 197: 212–221. doi: 10.1016/j.solener.2020.01.006.
Kumar A, Singh S, Mohammed MKA, Shalan AE. Computational modelling of two terminal CIGS/perovskite tandem solar cells with power conversion efficiency of 23.1%. European Journal of Inorganic Chemistry 2021; 47: 4959–4969. doi: 10.1002/ejic.202100214.
Xiao K, Lin R, Han Q. et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm using surface-anchoring zwitterionic antioxidant. Nature Energy 2020; 5: 870–880. doi: 10.1038/s41560-020-00705-5.