The influence of mining activity on the environment on the environment belongs to the most negative industrial influences. Mine subsidence on the surface can be a result of many deep underground mining activities. The present study offers the theory to the specific case of the deformation vectors solution in a case of disruption of the data homogeneity of the geodetic network structure in the monitoring station during periodical measurements in mine subsidence. The theory was developed for the mine subsidence at the abandoned magnesite mine of Košice-Bankov near the city of Košice in East Slovakia. The outputs from the deformation survey were implemented into geographical information system (GIS) applications to a process of gradual reclamation of whole mining landscape in the magnesite mine vicinity. After completion of the mining operations and liquidation of the mine company, it was necessary to determine the exact edges of the mine subsidence of Košice-Bankov with the zones of residual ground motion in order to implement a comprehensive reclamation of the devastated mining landscape. Requirement of knowledge about stability of the former mine subsidence was necessary for starting the reclamation work. Outputs from the present specific solutions of the deformation vectors confirmed the multi-year stability of the mine subsidence in the area of interest. Some numerical and graphical results from the deformation vectors survey in the abandoned magnesite mine of Košice-Bankov are presented. The obtained results were transformed into GIS for the needs of the municipality of Košice City to the implementation of the reclamation activities in the mining territory of Košice-Bankov.
The Oued Kert watershed in Morocco is essential for local biodiversity and agriculture, yet it faces significant challenges due to meteorological drought. This research addresses an urgent issue by aiming to understand the impacts of drought on vegetation, which is crucial for food security and water resource management. Despite previous studies on drought, there are significant gaps, including a lack of specific analyses on the seasonal effects of drought on vegetation in this under-researched region, as well as insufficient use of appropriate analytical tools to evaluate these relationships. We utilized the Standardized Precipitation Index (SPI) and the Normalized Difference Vegetation Index (NDVI) to analyze the relationship between precipitation and vegetation health. Our results reveal a very strong correlation between SPI and NDVI in spring (98%) and summer (97%), while correlations in winter and autumn are weaker (66% and 55%). These findings can guide policymakers in developing appropriate strategies and contribute to crop planning and land management. Furthermore, this study could serve as a foundation for awareness and education initiatives on the sustainable management of water and land resources, thereby enhancing the resilience of local ecosystems in the face of environmental challenges.
In the present work, a series of butyl methacrylate/1-hexene copolymers were synthesized, and their efficiency as viscosity index improvers, pour point depressants, and shear stabilizers of lube oil was investigated. The effect of 1-hexene molar ratio, type, and concentration of Lewis acids on the incorporation of 1-hexene into the copolymer backbone was investigated. The successful synthesis of the copolymers was confirmed through FTIR and 1H NMR spectroscopy. Results obtained from quantitative 1H NMR and GPC revealed that an increase in the molar ratio of 1-hexene to butyl methacrylate, along with concentration of Lewis acids led to an increase in 1-hexene incorporation and a reduction in Mn and Ð. Similar trends were observed when the Lewis acid changed from AlCl3 to organometallic acids. The maximum 1-hexene incorporation (26.4%) was achieved for sample BHY3, with a [1-hexene/BMA] ratio of 4 mol% and a [Yb(OTf)3/BMA] ratio of 2.5 mol%. Evaluation of the synthesized copolymers as lube oil additives demonstrated that the viscosity index was more significantly influenced by samples with higher molecular weight. Sample BHA13 represents maximum VI of 137. The copolymer containing Yb(OTf)3 as a catalyst exhibited superior efficiency as a pour point depressant. Furthermore, sample BHY3 showed the lowest shear stability index (6.4).
Recognizing the discipline category of the abstract text is of great significance for automatic text recommendation and knowledge mining. Therefore, this study obtained the abstract text of social science and natural science in the Web of Science 2010-2020, and used the machine learning model SVM and deep learning model TextCNN and SCI-BERT models constructed a discipline classification model. It was found that the SCI-BERT model had the best performance. The precision, recall, and F1 were 86.54%, 86.89%, and 86.71%, respectively, and the F1 is 6.61% and 4.05% higher than SVM and TextCNN. The construction of this model can effectively identify the discipline categories of abstracts, and provide effective support for automatic indexing of subjects.
Copyright © by EnPress Publisher. All rights reserved.