This study uses the opening of the new Mass Rapid Transit (MRT) in stages between 2010 and 2012 in Singapore as the exogenous event to empirically test the impact of the new Circle Line (CL) on housing wealth. Applying a "differences-in-differences" approach to the non-landed private housing transaction data covering the period from 2009 to 2013, we find that the average housing prices increase by 1.6% in the post-opening of the CL. We find significant capitalization of the new CL into housing prices, especially households living within a 400-meter radius (the treatment zone) from the closest MRT stations on the CL. The treatment effects that are measured by the "marginal willingness to pay" for houses located within the treatment zone is 13.2% relative to houses located outside the treatment zone. The new CL opening creates an estimated S$1.23 billion housing wealth effects for households living in close proximity to the CL MRT stations. However, we do not find significant "anticipative" effects on house prices in the six-month window prior to the opening of CL. The strongest treatment effect is found after the opening of the phase 1 of CL, and the treatment intensity declines in phases 2 and 3 of the CL opening.
Cardiovascular imaging analysis is a useful tool for the diagnosis, treatment and monitoring of cardiovascular diseases. Imaging techniques allow non-invasive quantitative assessment of cardiac function, providing morphological, functional and dynamic information. Recent technological advances in ultrasound have made it possible to improve the quality of patient treatment, thanks to the use of modern image processing and analysis techniques. However, the acquisition of these dynamic three-dimensional (3D) images leads to the production of large volumes of data to process, from which cardiac structures must be extracted and analyzed during the cardiac cycle. Extraction, three-dimensional visualization, and qualification tools are currently used within the clinical routine, but unfortunately require significant interaction with the physician. These elements justify the development of new efficient and robust algorithms for structure extraction and cardiac motion estimation from three-dimensional images. As a result, making available to clinicians new means to accurately assess cardiac anatomy and function from three-dimensional images represents a definite advance in the investigation of a complete description of the heart from a single examination. The aim of this article is to show what advances have been made in 3D cardiac imaging by ultrasound and additionally to observe which areas have been studied under this imaging modality.
Copyright © by EnPress Publisher. All rights reserved.