The growing interconnectedness of the world has led to a rise in cybersecurity risks. Although it is increasingly conventional to use technology to assist business transactions, exposure to these risks must be minimised to allow business owners to do transactions in a secure manner. While a wide range of studies have been undertaken regarding the effects of cyberattacks on several industries and sectors, However, very few studies have focused on the effects of cyberattacks on the educational sector, specifically higher educational institutions (HEIs) in West Africa. Consequently, this study developed a survey and distributed it to HEIs particularly universities in West Africa to examine the data architectures they employed, the cyberattacks they encountered during the COVID-19 pandemic period, and the role of data analysis in decision-making, as well as the countermeasures employed in identifying and preventing cyberattacks. A total of one thousand, one hundred and sixty-four (1164) responses were received from ninety-three (93) HEIs and analysed. According to the study’s findings, data-informed architecture was adopted by 71.8% of HEIs, data-driven architecture by 24.1%, and data-centric architecture by 4.1%, all of which were vulnerable to cyberattacks. In addition, there are further concerns around data analysis techniques, staff training gaps, and countermeasures for cyberattacks. The study’s conclusion includes suggestions for future research topics and recommendations for repelling cyberattacks in HEIs.
The purpose of this paper is to explore the performance of ridge regression and the random forest model improved by genetic algorithm in predicting the Boston house price data set and conduct a comparative analysis. To achieve it, the data is divided into training set and test set according to the ratio of 70-30. The RidgeCV library is used to select the best regularization parameter for the Ridge regression model, and for the random forest model, the genetic algorithm is used to optimize the model's hyperparameters. The result shows that compared with ridge regression, the random forest model improved by genetic algorithm can perform better in the regression problem of Boston house prices.
In recent years, China has been emphasizing the importance of "mass entrepreneurship and innovation". Through such policies, more outstanding "great country craftsmen" should be cultivated, providing strong support for the overall industrial upgrading of our country. In order to achieve this grand national strategic goal, each university needs to conduct targeted exploration of the integration of innovation, entrepreneurship, and craftsmanship spirit based on its own actual situation. This article will explore the integrated cultivation mode of entrepreneurship and innovation+craftsmanship spirit from multiple aspects such as national policy guidance, student training plans, and training channels, based on the specific situation of the current development of entrepreneurship and innovation, combined with the research results of our school. In the process of entrepreneurship and innovation education, we will cultivate students' craftsmanship spirit and provide sufficient assistance for social development.
The global economic recession has caused pessimism in terms of prospects of sales recovering in the future. The present study is an attempt to investigate the cost stickiness behavior by focusing on specific characteristics of companies. The research was done through documentary analysis and access to quantitative data, with the use of statistical methods for analysis as panel data. The statistical population of the actual study included all companies listed on the India stock exchange from 2017 to 2021. They were selected after screening 128 listed companies. The regression method was used to examine the relationship between variables and to present a forecast model. The results of testing the first hypothesis showed that companies’ costs are sticky and according to the results of this hypothesis, an increase in costs when the level of activity increases is greater than the level of reduction in costs when the volumes of the activities are decreased. The results of the second hypothesis showed a remarkable relationship between the cost stickiness and specific characteristics of companies (size, number of employees, long-term assets, financial leverage, and accuracy of profits forecast). Based on the third hypothesis, there is a notable difference between cost stickiness at different levels of specific characteristics of companies. Therefore, the results show that environmental uncertainty such as COVID-19, increases cost stickiness.
Copyright © by EnPress Publisher. All rights reserved.