This article explores the dynamic and complex regulatory landscape of cargo transportation in the United Arab Emirates (UAE). As a critical hub in global trade, the UAE’s approach to cargo transportation not only impacts its economic landscape but also has broader implications for international logistics and trade. When the authors speak about air cargo, a very prominent characteristic comes to mind, that is, the ‘speed’ at which goods are transported from one point to another in a world which is fueled by time-based competition which connects leading suppliers, smaller businesses to consumers within a complicated global supply chain operating within networks. The authors aim to examine the current regulatory framework governing cargo operations, highlighting key events contributing to the growth of cargo transportation in recent years within the UAE, shedding light on the central regulatory bodies and key players in the UAE which contribute to the chain of transporting cargo and shipments in the UAE. This study will also briefly compare the standards applied in the UAE with international norms. It delves into the implications of existing regulations on various facets of trade and logistics, including compliance challenges faced by businesses. The article identifies specific challenges in the regulatory setting, such as safety, environmental considerations and the integration of emerging technologies. Furthermore, it distinguishes between the flexible and rigid aspects of these regulations, analyzing their impact on the industry. Looking ahead, the article forecasts emerging trends and potential shifts in regulatory policies, emphasizing the need for adaptability and forward-thinking in policymaking. The aim is to provide a comprehensive overview of the UAE’s regulation of the cargo transportation landscape. The present study offers insights into its current status, challenges, and future directions, thereby contributing to policy development in this vital sector. New research examining the UAE’s cargo regulations reveals significant gaps that could stall its ambitions of becoming a leading cargo transportation global hub. The study identifies shortcomings in regulations related to cargo transportation in the UAE and its efficiency. These areas, along with potential inflexibility in the current system, pose challenges to the UAE to compete effectively in the time-sensitive world of cargo shipments.
At present, states and entire regions that possess significant reserves of sought-after minerals have great potential to maintain and even improve their socio-economic position in the foreseeable future. Since the beginning of 2000, the increase in mining volumes of minerals has been more than 50%; however, more than half of all extracted raw materials fall to only five leading countries: China, the USA, the Russian Federation, Australia, and India. This article presents the results of the analysis of the global structure of mineral production by type and geographic region. The article provides an in-depth analysis of the world’s leading mining companies, identifying the key players in the industry. A comprehensive overview of each company’s performance, including key financial indicators and production statistics, is presented. The main environmental risks as a result of the continued increase in the global scale of mining have been identified. The prospects for the development of the mining sector are shown. The results of the study can be used by the scientific community as an information source.
Providing and using energy efficiently is hampered by concerns about the environment and the unpredictability of fossil fuel prices and quantities. To address these issues, energy planning is a crucial tool. The aim of the study was to prioritize renewable energy options for use in Mae Sariang’s microgrid using an analytical hierarchy process (AHP) to produce electricity. A prioritization exercise involved the use of questionnaire surveys to involve five expert groups with varying backgrounds in Thailand’s renewable energy sector. We looked at five primary criteria. The following four combinations were suggested: (1) Grid + Battery Energy Storage System (BESS); (2) Grid + BESS + Solar Photovoltaic (PV); (3) Grid + Diesel Generator (DG) + PV; and (4) Grid + DG + Hydro + PV. To meet demand for electricity, each option has the capacity to produce at least 6 MW of power. The findings indicated that production (24.7%) is the most significant criterion, closely followed by economics (24.2%), technology (18.5%), social and environmental (18.1%), and structure (14.5%). Option II is strongly advised in terms of economic and structural criteria, while option I has a considerable advantage in terms of production criteria and the impact on society and the environment. The preferences of options I, IV, and III were ranked, with option II being the most preferred choice out of the four.
The integration of digitalization and servitization has become a significant trend in transforming the manufacturing industry due to digital intelligence technology. This paper examines the impact of the integration of digitalization and servitization on the performance of manufacturing companies and how small-scale enterprises can promote digital transformation leading to servitization. The study involved surveying 331 manufacturing companies in China using a seven-point Likert scale questionnaire. Measurement scales were validated using confirmatory factor analysis and discriminant validity tests. Mediation analysis assessed digitalization’s impact on servitization and firm performance. The study’s findings emphasize the significant impact of digitalization and servitization on enterprises’ performance. Digitalization plays a crucial role in mediating this relationship. The study highlights three critical dimensions of digital variables, including digital technology, digital labor, and digital relationship resources, essential in enabling effective servitization. Manufacturing enterprises generally prefer aligning their technology investments and organizational changes within the digitalization framework to implement servitization successfully. The study suggests two integration strategies, namely conservative and aggressive. The finding emphasizes that the convergence of digitalization and servitization leads to a new manufacturing production mode called digital servitization.
The chemical reinforcement of sandy soils is usually carried out to improve their properties and meet specific engineering requirements. Nevertheless, conventional reinforcement agents are often expensive; the process is energy-intensive and causes serious environmental issues. Therefore, developing a cost-effective, room-temperature-based method that uses recyclable chemicals is necessary. In the current study, poly (styrene-co-methyl methacrylate) (PS-PMMA) is used as a stabilizer to reinforce sandy soil. The copolymer-reinforced sand samples were prepared using the one-step bulk polymerization method at room temperature. The mechanical strength of the copolymer-reinforced sand samples depends on the ratio of the PS-PMMA copolymer to the sand. The higher the copolymer-to-sand ratio, the higher the sample’s compressive strength. The sand (70 wt.%)-PS-PMMA (30 wt.%) sample exhibited the highest compressive strength of 1900 psi. The copolymer matrix enwraps the sand particles to form a stable structure with high compressive strengths.
Copyright © by EnPress Publisher. All rights reserved.