Urban morphologies in the global south are shaped by a complex interplay of historical imprints, from colonial legacies and ethnic tensions to waves of modernization and decolonization efforts. This study delves into the urban morphology of Hangzhou during the late 19th and early 20th centuries, unraveling its transformative patterns steered by a convergence of spatial politics, economic forces, and cultural dynamics. Drawing upon a unique blend of historical map restoration techniques, we unearth pivotal morphological nuances that bridge Hangzhou’s transition from its pre-modern fabric to its modern-day urban layout. We uncover key shifts such as the movement from intricate street layouts to systematic grids, the strategic integration of public spaces like West Lakeside Park, and the city’s evolving urban epicenter mirroring its broader socio-political and economic narratives. These insights not only spotlight Hangzhou’s distinct urban journey in the context of ethnic conflicts, Western influences, and decolonization drives but also underscore the value of context-sensitive urban morphological research in the global south. Our findings emphasize the criticality of synergizing varied methodologies and theoretical perspectives to deepen our comprehension of urban transitions, sculpt place identities, and invigorate public imagination in global urban planning.
To gain a deep understanding of maintenance and repair planning, investigate the weak points of the distribution network, and discover unusual events, it is necessary to trace the shutdowns that occurred in the network. Many incidents happened due to the failure of thermal equipment in schools. On the other hand, the most important task of electricity distribution companies is to provide reliable and stable electricity, which minimal blackouts and standard voltage should accompany. This research uses seasonal time series and artificial neural network approaches to provide models to predict the failure rate of one of the equipment used in two areas covered by the greater Tehran electricity distribution company. These data were extracted weekly from April 2019 to March 2021 from the ENOX incident registration software. For this purpose, after pre-processing the data, the appropriate final model was presented with the help of Minitab and MATLAB software. Also, average air temperature, rainfall, and wind speed were selected as input variables for the neural network. The mean square error has been used to evaluate the proposed models’ error rate. The results show that the time series models performed better than the multi-layer perceptron neural network in predicting the failure rate of the target equipment and can be used to predict future periods.
Hybrid nanofluids have several potential applications in various industries, including electronics cooling, automotive cooling systems, aerospace engineering, and biomedical applications. The primary goal of the study is to provide more information about the characteristics of a steady and incompressible stream of a hybrid nanofluid flowing over a thin, inclined needle. This fluid consists of two types of nanoparticles: non-magnetic nanoparticles (aluminium oxide) and magnetic nanoparticles (ferrous oxide). The base fluid for this nanofluid is a mixture of water and ethylene glycol in a 50:50 ratio. The effects of inclined magnetic fields and joule heating on the hybrid nanofluid flow are considered. The Runge-Kutta fourth-order method is used to numerically solve the partial differential equations and governing equations, which are then converted into ordinary differential equations using similarity transformations. Natural convection refers to the fluid flow that arises due to buoyancy forces caused by temperature differences in a fluid. In the context of an inclined needle, the shape and orientation of the needle have significantly affected the flow patterns and heat transfer characteristics of the nanofluid. These analyses protest that raising the magnetic parameter results in an increase in the hybrid nanofluid thermal profile under slip circumstances. Utilizing the potential of hybrid nanofluids in a variety of technical applications, such as energy systems, biomedicine, and thermal management, requires an understanding of and ability to manipulate these effects.
Iran has one of the oldest civilizations in the world, and many elements of today’s urban planning and design have their origins in the country. However, mass country-city migration from the 1960s onwards brought enormous challenges for the country’s main cities in the provision of adequate housing and associated services, resulting in a range of sub-standard housing solutions, particularly in Tehran, the capital city. At the same time, and notably in the past decade, Iran’s main cities have had significant involvement in the smart city movement. The Smart Tehran Program is currently underway, attempting to transition the capital towards a smart city by 2025. This study adopts a qualitative, inductive approach based on secondary sources and interview evidence to explore the current housing problems in Tehran and their relationship with the Smart Tehran Program. It explores how housing has evolved in Tehran and identifies key aspects of the current provision, and then assesses the main components of the Smart Tehran Program and their potential contribution to remedying the housing problems in the city. The article concludes that although housing related issues are at least being raised via the new smart city technology infrastructure, any meaningful change in housing provision is hampered by the over centralized and bureaucratic political system, an out of date planning process, lack of integration of planning and housing initiatives, and the limited scope for real citizen participation.
Copyright © by EnPress Publisher. All rights reserved.