Developing “New Quality Productive Forces” (NQPFs) has been accepted as a new theory to accelerate the high-quality development in China. In current, China’s high-quality development mainly relies on the traction of the digital economy. In view of this, developing NQPFs in China’s digital economy sector requires locate and remove some obstacles, such as the insufficient utilization of data, inadequate algorithm regulation, the mismatched supply and demand of regional computing power and the immature market environment. As a solution, it is necessary to allocating data property rights in a market-oriented way, establishing a user-centered algorithm governance system, accelerating the establishment of the national integrated computing network, and maintaining fair competition to optimize the market environment.
In recent years, the environment in the manufacturing industry has become strongly competitive, which is why companies have found it necessary to constantly adjust their strategies and take actions aimed at improving their performance and competitiveness in a sustainable way to grow and remain in the market. Therefore, this paper aims to present an analysis to explain the current situation in the manufacturing industry in Aguascalientes, Mexico, by means of a survey in which product eco-innovation (PEI), process eco-innovation (PrEI) and organizational eco-innovation (OEI) and its effect on environmental performance (EP) and sustainable competitive performance (SCP) were measured. The results show that (EP) is positively and significantly influenced by (PEI) and (PrEI), while no significant influence is found for (OE). Furthermore, it is confirmed that environmental performance positively and significantly influences (SCP). The findings obtained from this study point to the relevance of promoting eco-innovation activities in the manufacturing sector, as this will ensure sustainable competitiveness.
The article examines the modern vectors of implementation of measures to achieve results in the field of Sustainable Development Goals (SDGs), both at the level of national priorities and at the level of Central Asian countries. The purpose of this study is a multidimensional analysis of actions that make it possible to develop solutions to stabilize the environmental situation in Central Asian countries based on global international trends. The scientific novelty of the research lies in the integrated use of thematic modeling methods, as well as sociological surveys used to improve the efficiency of business processes in the field of environmental protection. The methodological basis for conducting a comparative assessment of the impact of environmental policy instruments used on regional development is the concept of sustainable development. In conclusion, conclusions are drawn about the need to develop effective mechanisms for the implementation of environmental policy in the studied countries.
Hospital waste containing antibiotics is toxic to the ecosystem. Ciprofloxacin is one of the essential, widely used antibiotics and is often detected in water bodies and soil. It is vital to treat these medical wastes, which urge new research towards waste management practices in hospital environments themselves. Ultimately minimizes its impact in the ecosystem and prevents the spread of antibiotic resistance. The present study highlights the decomposition of ciprofloxacin using nano-catalytic ZnO materials by reactive oxygen species (ROS) process. The most effective process to treat the residual antibiotics by the photocatalytic degradation mechanism is explored in this paper. The traditional co-precipitation method was used to prepare zinc oxide nanomaterials. The characterization methods, X-Ray diffraction analysis (XRD), Fourier Transform infrared spectroscopy (FTIR), Ulraviolet-Visible spectroscopy (UV-Vis), Scanning Electron microscopy (SEM) and X-Ray photoelectron spectroscopy (XPS) have done to improve the photocatalytic activity of ZnO materials. The mitigation of ciprofloxacin catalyzed by ZnO nano-photocatalyst was described by pseudo-first-order kinetics and chemical oxygen demand (COD) analysis. In addition, ZnO materials help to prevent bacterial species, S. aureus and E. coli, growth in the environment. This work provides some new insights towards ciprofloxacin degradation in efficient ways.
Introduction: The growing global focus on Environmental, Social, and Governance (ESG) standards necessitates that companies optimize their corporate governance to balance economic, social, and ecological responsibilities. This study examines how the synergistic effects of Corporate Social Responsibility (CSR) and Environmental Responsibility (ER) can promote sustainable corporate development. Objective: The objective of this study is to analyze the critical elements of corporate governance structure optimization and to explore how companies can enhance their governance to achieve sustainable development through strengthened social and environmental management practices. Methods: The study uses case analysis and literature review to assess high-performing enterprises in CSR and ER integration, examining their governance, policy, and environmental strategies to uncover the factors behind their success in economic, social, and environmental spheres. Results: The research shows that optimizing governance structures markedly improves operational effectiveness. Companies need to create strong internal controls for equitable and transparent decisions, embedding CSR and ER into their strategies. CSR fulfillment builds public trust and environmental support, whereas ER improves brand reputation and competitiveness, driving sustainable and mutually advantageous development. Conclusion: The key to sustainable development in ESG practice lies in optimizing corporate governance and strengthening the synergy between social and environmental responsibilities. It is imperative for companies to build a governance structure that complies with ESG standards and to incorporate social and environmental considerations into their corporate strategies to effectively manage the triple bottom line of economic, social, and environmental performance.
Copyright © by EnPress Publisher. All rights reserved.