Education is one of the basic needs that every child should have. Information communication technology has a significant influence on special needs children’s schooling. Instead of considering learning a difficult chore, the adoption of measures such as ICT can simplify it and make inclusive education a reality. Aim: This current systematic literature review aims to determine the extent of ICT adoptions in special education scenarios. Method: This paper examined pertinent literature on ICT in special education in the period 2000 to 2023. The key articles extracted through keyword search were gathered from databases indexed in Web of Science and Scopus. The collected data were then screened using a VOS viewer for the most relevant information. From the web of Science, 31 articles were found to have connections with one another while the same process when applied to the Scopus database, helped obtain 8 articles. Results: A total of 39 articles fulfilled the search inclusion criteria of minimum two keyword occurrences. These articles were all written in English and published between 2000 and 2023. The in-depth analysis of all these articles was performed along three broad themes, viz., availability of SEN based ICTs and their impact on children with disabilities, quality of available ICT integrated curriculum for SEN and the challenges in promoting ICTs for inclusive education. Conclusions: The paper concludes that ICT integration in special education would make learning easier for children with disabilities when compared to learning using traditional methods. Implications: The paper pinpoints significant limitations in ICT use found in existing literature and the lack of it to support inclusive education. The authors make recommendations for improved ICT integrated curriculum to improve inclusivity.
The goal of this work was to create and assess machine-learning models for estimating the risk of budget overruns in developed projects. Finding the best model for risk forecasting required evaluating the performance of several models. Using a dataset of 177 projects took into account variables like environmental risks employee skill level safety incidents and project complexity. In our experiments, we analyzed the application of different machine learning models to analyze the risk for the management decision policies of developed organizations. The performance of the chosen model Neural Network (MLP) was improved after applying the tuning process which increased the Test R2 from −0.37686 before tuning to 0.195637 after tuning. The Support Vector Machine (SVM), Ridge Regression, Lasso Regression, and Random Forest (Tuned) models did not improve, as seen when Test R2 is compared to the experiments. No changes in Test R2’s were observed on GBM and XGBoost, which retained same Test R2 across different tuning attempts. Stacking Regressor was used only during the hyperparameter tuning phase and brought a Test R2 of 0. 022219.Decision Tree was again the worst model among all throughout the experiments, with no signs of improvement in its Test R2; it was −1.4669 for Decision Tree in all experiments arranged on the basis of Gender. These results indicate that although, models such as the Neural Network (MLP) sees improvements due to hyperparameter tuning, there are minimal improvements for most models. This works does highlight some of the weaknesses in specific types of models, as well as identifies areas where additional work can be expected to deliver incremental benefits to the structured applied process of risk assessment in organizational policies.
Access to clean water and improved sanitation are basic elements of any meaningful discourse in rural development. They are critical challenges for achieving sustainable development over the next decade. This paper seeks to examine the strategies for improving access to clean water and sanitation in Nigerian rural communities. Hypothetically, the paper states that there is no significant relationship between access to clean water and sanitation and the attainment of Sustainable Development Goal 6 in Nigeria. The paper leverages Resilience Theory. The survey research design was adopted, and primary data was obtained from a sample size of 250 respondents, proportionally drawn from the 10 wards in Obanliku local government area of Cross River State. The chi-square statistical technique was to test the hypothesis. The result shows that the calculated value of Chi-square (X2) is 24.4. Since the P-value of 21.03 is less than the level of significance (0.05), the null hypothesis was rejected and the alternate accepted. The study concludes that there is a significant relationship between access to clean water and sanitation and the attainment of Sustainable Development Goal 6 in Cross River State, Nigeria. it recommends the need for more commitment on the part of government and international donor agencies in expanding access to clean water and improved sanitation in Nigeria.
The Consumer Price Index (CPI) is a vital gauge of economic performance, reflecting fluctuations in the costs of goods, services, and other commodities essential to consumers. It is a cornerstone measure used to evaluate inflationary trends within an economy. In Saudi Arabia, forecasting the Consumer Price Index (CPI) relies on analyzing CPI data from 2013 to 2020, structured as an annual time series. Through rigorous analysis, the SARMA (0,1,0) (12,0,12) model emerges as the most suitable approach for estimating this dataset. Notably, this model stands out for its ability to accurately capture seasonal variations and autocorrelation patterns inherent in the CPI data. An advantageous feature of the chosen SARMA model is its self-sufficiency, eliminating the need for supplementary models to address outliers or disruptions in the data. Moreover, the residuals produced by the model adhere closely to the fundamental assumptions of least squares principles, underscoring the precision of the estimation process. The fitted SARMA model demonstrates stability, exhibiting minimal deviations from expected trends. This stability enhances its utility in estimating the average prices of goods and services, thus providing valuable insights for policymakers and stakeholders. Utilizing the SARMA (0,1,0) (12,0,12) model enables the projection of future values of the Consumer Price Index (CPI) in Saudi Arabia for the period from June 2020 to June 2021. The model forecasts a consistent upward trajectory in monthly CPI values, reflecting ongoing economic inflationary pressures. In summary, the findings underscore the efficacy of the SARMA model in predicting CPI trends in Saudi Arabia. This model is a valuable tool for policymakers, enabling informed decision-making in response to evolving economic dynamics and facilitating effective policies to address inflationary challenges.
The following paper assesses the relationship between electricity consumption, economic growth, environmental pollution, and Information and Communications Technology (ICT) development in Kazakhstan. Using the structural equation method, the study analyzes panel data gathered across various regions of Kazakhstan between 2014 and 2022. The data were sourced from official records of the Bureau of National Statistics of Kazakhstan and include all regions of Kazakhstan. The chosen timeframe includes the period from 2014, which marked a significant drop in oil prices that impacted the overall economic situation in the country, to 2022. The main hypotheses of the study relate to the impact of electricity consumption on economic growth, ICT, and environmental sustainability, as well as ICT’s role in economic development and environmental impact. The results show electricity consumption’s positive effect on economic growth and ICT development while also revealing an increase in pollutant emissions (emissions of liquid and gaseous pollutants) with economic growth and electricity consumption. The development of ICT in Kazakhstan has been revealed to not have a direct effect on reducing pollutant emissions into the environment, raising important questions about how technology can be leveraged to mitigate environmental impact, whether current technological advancements are sufficient to address environmental challenges, and what specific measures are needed to enhance the environmental benefits of ICT. There is a clear necessity to integrate sustainable practices and technologies to achieve balanced development. These results offer important insights into the relationships among electricity consumption, technology, economic development, and environmental issues. They underscore the complexity and multidimensionality of these interactions and suggest directions for future research, especially in the context of finding sustainable solutions for balanced development.
How are telecommunications infrastructure, institutions and poverty related in a war-torn economy such as Afghanistan? Afghanistan has been plagued by poor governance, low usage of telecommunications, and extreme poverty levels which can be termed triple-challenges. High levels of political instability affected telecommunications investment and adversely affected the adoption and diffusion of modern technology. This study examines the asymmetric effect of telecommunications and governance (institutions) on poverty reduction over the period 1989–2019 using a nonlinear autoregressive distributed lag (NARDL) model. In the short run, we establish that information and communication technology, private domestic credit, governance, and educational access for males and females are essential tools that can be used for poverty reduction. In the long run, we also establish that Afghanistan can reduce poverty levels through the use of information and communication technology, governance, and educational access for both males and females. The following policy recommendations were suggested: research and development, robust policy formulation on governance and ICT, development of the ICT sector, and improved governance. These are critical in reducing the high poverty levels as well as solving the institutional challenges faced by Afghanistan.
Copyright © by EnPress Publisher. All rights reserved.